Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-28T04:15:34.277Z Has data issue: false hasContentIssue false

Electron Spectroscopic Imaging and Diffraction: Ideal Tools for the Characterization of Ceramic Materials

Published online by Cambridge University Press:  02 July 2020

J. Mayer
Affiliation:
Max-Planck-Institut fur Metallforschung, Seestr. 92, D-70174, Stuttgart, F. R., Germany
J. Plitzko
Affiliation:
Max-Planck-Institut fur Metallforschung, Seestr. 92, D-70174, Stuttgart, F. R., Germany
J. Marien
Affiliation:
Max-Planck-Institut fur Metallforschung, Seestr. 92, D-70174, Stuttgart, F. R., Germany
S. Krämer
Affiliation:
Max-Planck-Institut fur Metallforschung, Seestr. 92, D-70174, Stuttgart, F. R., Germany
T. Gemming
Affiliation:
Max-Planck-Institut fur Metallforschung, Seestr. 92, D-70174, Stuttgart, F. R., Germany
Get access

Extract

The most widely spread application of energy filtering transmission electron microscopy (EFTEM) is the determination of elemental distributions in analytical investigations. The new EFTEM techniques are based on data acquisition by electron spectroscopic imaging (ESI), which offers the advantage of fast two-dimensional recording of the inner-shell loss intensities. In a more general framework, the new ESI methods and the standard PEELS technique both aim at exploring the same three dimensional data space. This data space is represented by the spatial coordinates x, y and the energy loss ΔE and the resulting intensity distribution I(x,y,ΔE) is the quantity which is evaluated. It is intuitively clear, that acquiring more than just three consecutive ESI images gives us the possibility to get quantitative information about the spectra and the shape of the ionization edge. The information on the EEL spectrum can be extracted from a series of ESI images for each individual pixel or, by integrating over corresponding pixels, for a given image area and can be quantified by applying standard EELS quantification techniques.

Type
Future of Microscopy: Ceramics, Composites, and Cement
Copyright
Copyright © Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Krivanek, O.L.et al., Microsc. Microanal. Microstr. 2 (1991) 315.CrossRefGoogle Scholar
2.Lavergne, J.L.et al., Microsc. Microanal. Microstr. 3 (1992) 517.CrossRefGoogle Scholar
3.Mayer, J.and Plitzko, J.M., J. Microsc. 183 (1996) 2.CrossRefGoogle Scholar
4.Mayer, J.et al., Micron 28 (1997) 361.CrossRefGoogle Scholar
5.Tanaka, I.et al., J. Am. Cer. Soc, 77 (1993) 911.CrossRefGoogle Scholar
6.Gu, H.et al., Ultramicroscopy, 59 (1995) 215.CrossRefGoogle Scholar
7.Mayer, J.et al., J. Electr. Microsc. 47 (1997) 283.CrossRefGoogle Scholar
8.Clarke, D.R.et al., J. Am. Cer. Soc, 76 (1993) 1201.CrossRefGoogle Scholar
9.Jeanguillaume, C. and Colliex, C., Ultramicroscopy, 28 (1989) 252.CrossRefGoogle Scholar
10. We thank Tomokiyo, Y.and Matsumura, S. for letting us use their JEOL 2010 FEF the Volkswagen-Stiftung is gratefully acknowledgedGoogle Scholar