We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save this undefined to your undefined account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your undefined account.
Find out more about saving content to .
To send this article to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study almost prime solutions of systems of Diophantine equations in the Birch setting. Previous work shows that there exist integer solutions of size $B$ with each component having no prime divisors below $B^{1/u}$, where $u$ equals $c_{0}n^{3/2}$, $n$ is the number of variables and $c_{0}$ is a constant depending on the degree and the number of equations. We improve the polynomial growth $n^{3/2}$ to the logarithmic $(\log n)(\log \log n)^{-1}$. Our main new ingredients are the generalization of the Brüdern–Fouvry vector sieve in any dimension and the incorporation of smooth weights into the Davenport–Birch version of the circle method.
Assuming a conjecture on distinct zeros of Dirichlet $L$-functions we get asymptotic results on the average number of representations of an integer as the sum of two primes in arithmetic progression. On the other hand the existence of good error terms gives information on the location of zeros of $L$-functions. Similar results are obtained for an integer in a congruence class expressed as the sum of two primes.
We prove an inverse theorem for the Gowers $U^{2}$-norm for maps $G\rightarrow {\mathcal{M}}$ from a countable, discrete, amenable group $G$ into a von Neumann algebra ${\mathcal{M}}$ equipped with an ultraweakly lower semi-continuous, unitarily invariant (semi-)norm $\Vert \cdot \Vert$. We use this result to prove a stability result for unitary-valued $\unicode[STIX]{x1D700}$-representations $G\rightarrow {\mathcal{U}}({\mathcal{M}})$ with respect to $\Vert \cdot \Vert$.
We show that under the Eikonal abrasion model, prescribing uniform normal speed in the direction of the inward surface normal, the isoperimetric quotient of a convex shape is decreasing monotonically.
We characterize all bounded Hankel operators $\unicode[STIX]{x1D6E4}$ such that $\unicode[STIX]{x1D6E4}^{\ast }\unicode[STIX]{x1D6E4}$ has finite spectrum. We identify spectral data corresponding to such operators and construct inverse spectral theory including the characterization of these spectral data.
Utilizing frameworks developed by Delsarte, Yudin and Levenshtein, we deduce linear programming lower bounds (as $N\rightarrow \infty$) for the Riesz energy of $N$-point configurations on the $d$-dimensional unit sphere in the so-called hypersingular case; i.e., for non-integrable Riesz kernels of the form $|x-y|^{-s}$ with $s>d$. As a consequence, we immediately get (thanks to the poppy-seed bagel theorem) lower estimates for the large $N$ limits of minimal hypersingular Riesz energy on compact $d$-rectifiable sets. Furthermore, for the Gaussian potential $\exp (-\unicode[STIX]{x1D6FC}|x-y|^{2})$ on $\mathbb{R}^{p}$, we obtain lower bounds for the energy of infinite configurations having a prescribed density.