Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T05:25:58.419Z Has data issue: false hasContentIssue false

On some exponential sums connected with Ramanujan's τ-function

Published online by Cambridge University Press:  26 February 2010

A. Perelli
Affiliation:
Istituto di Matematica, Universitá di Genova, Via L.B. Alberti 4, 16132 Genova, Italy.
Get access

Extract

In a recent paper, Parson and Sheingorn [11[ gave some estimates for certain exponential sums associated with Ramanujan's τ-function and, in general, with the Fourier coefficients of the cusp forms for the full modular group which are eigenfunctions for the Hecke operators. The exponential sums considered in that paper are closely connected with the exponential sum

where α ∈ ℝ and e(θ) = e2πiθ, and the methods used in [11] go back essentially to Hardy-Littlewood [5], Hardy [4], Hecke [6], Wilton [19] and Walfisz [18].

Type
Research Article
Copyright
Copyright © University College London 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Davenport, H.. Multiplicative Number Theory, second edition (Springer-Verlag, 1980).CrossRefGoogle Scholar
2.Deligne, P.. La conjecture de Weil. I.H.É.S. Publ. Math., 43 (1974), 273304.CrossRefGoogle Scholar
3.Grupp, F.. Nullstellensatze und Anwendungen des grossen Siebes bei Modulformen. Dissertation (Univ. Ulm, 1981).Google Scholar
4.Hardy, G. H.. Note on Ramanujan's arithmetical function τ(n). Proc. Camb. Phil. Soc., 23 (1927), 675680.CrossRefGoogle Scholar
5.Hardy, G. H. and Littlewood, J. E.. Some problems of Diophantine approximation II. Acta Math., 37 (1914), 193238.CrossRefGoogle Scholar
6.Hecke, E.. Theorie der Eisensteinschen Reihen höherer Stufe und ihre Anwendungen auf Funktionentheorie und Arithmetik. Abh. Math. Sem. Hamb. Univ., 5 (1927), 199224.CrossRefGoogle Scholar
7.Lekkerkerker, G. C.. On the zeros of a class of Dirichlet series. Dissertation (Univ. Utrecht, 1955).Google Scholar
8.Linnik, Ju. V.. The dispersion method in binary additive problems. A.M.S. Transl. of Math. Monographs, 4 (1963).Google Scholar
9.Montgomery, H. L.. Topics in multiplicative number theory. Lecture notes. 227 (Springer, 1971).Google Scholar
10.Ogg, A. P.. On a convolution of L-series. Invent. Math., 7 (1969), 297312.CrossRefGoogle Scholar
11.Parson, L. A. and Sheingorn, M.. Exponential sums connected with Ramanujan's function τ(n). Mathematika, 29 (1982), 270277.CrossRefGoogle Scholar
12.Perelli, A.. On the prime number theorem for the coefficients of certain modular forms. To appear in the Banach Center Publ., vol 17.CrossRefGoogle Scholar
13.Perelli, A. and Puglisi, G.. Real zeros of general L-functions. Rend. Ace. Naz. Lincei, 70 (1982), 6974.Google Scholar
14.Rankin, R. A.. Contributions to the theory of Ramanujan's function τ(n) and similar arithmetical functions, I and II. Proc. Camb. Phil. Soc., 34 (1939), 351372.CrossRefGoogle Scholar
15.Rankin, R. A.. Ramanujan's function τ(n). Symp. on Thcor. Physics ami Math., 10 (Plenum, 1970), 3745.Google Scholar
16.Smith, R. A.. The average order of a class of arithmetic functions over arithmetic progressions with applications to quadratic forms. J. reine angew. Math., 317 (1980), 7487.Google Scholar
17.Vaughan, R. C.. An elementary method in prime number theory. Acta Arith., 37 (1980), 111115.CrossRefGoogle Scholar
18.Walfisz, A.. Über die Koeffizientsummen einiger Modulformen. Math. Ann., 108 (1933), 7590.CrossRefGoogle Scholar
19.Wilton, J. R.. A note on Ramanujan's arithmetical function τ(n). Proc. Camb. Phil. Soc., 25 (1929), 121129.CrossRefGoogle Scholar