Article contents
THE INTERSECTION OF PIATETSKI-SHAPIRO SEQUENCES
Part of:
Exponential sums and character sums
Published online by Cambridge University Press: 01 April 2014
Abstract
We give an asymptotic formula for the number of primes $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}p \le x$ of the form $p = [n_1^{c_1}] = \cdots = [n_d^{c_d}]$, where $c_1, \ldots, c_d$ are greater than 1 but “sufficiently close” to 1. This improves work of E. R. Sirota $(d=2)$ and W. Zhai $(d \ge 3)$.
MSC classification
Secondary:
11L20: Sums over primes
- Type
- Research Article
- Information
- Copyright
- Copyright © University College London 2014
References
Graham, S. W. and Kolesnik, G., Van der Corput’s Method of Exponential Sums, Cambridge University Press (Cambridge, 1991).CrossRefGoogle Scholar
Harman, G., Small fractional parts of additive forms. Philos. Trans. R. Soc. Lond. A 345 1993, 327–338.Google Scholar
Heath-Brown, D. R., Prime numbers in short intervals and a generalized Vaughan identity. Canad. J. Math. 34 1982, 1365–1377.CrossRefGoogle Scholar
Karacuba, A. A., Estimates for trigonmetric sums by Vinogradov’s method, and some applications. Proc. Steklov Inst. Math. 112 1973, 251–265.Google Scholar
Leitmann, D., Durchschnitte von Piatetski-Shapiro Folgen. Monatsh. Math. 94 1982, 33–44.CrossRefGoogle Scholar
Piatetski-Shapiro, I. I., On the distribution of prime numbers in sequences of the form [f (n)]. Math. Sb. 33 1953, 559–566.Google Scholar
Rivat, J. and Sargos, P., Nombres premiers de la forme [n c]. Canad. J. Math. 53 2001, 414–433.CrossRefGoogle Scholar
Sirota, E. R., Laws for the distribution of primes of the form p = [n c] = [m d] in arithmetic progressions. Zap. Nauchn. Sem. Leningrad Otdel. Mat. Inst. Steklov 121 1983, 94–102.Google Scholar
Zhai, W., On the k-dimensional Piatetski-Shapiro prime number theorem. Sci. China Ser. A 42 1999, 1173–1183.CrossRefGoogle Scholar
- 8
- Cited by