No CrossRef data available.
Article contents
VARIATION ON A THEOREM BY CARATHÉODORY
Part of:
General convexity
Published online by Cambridge University Press: 10 December 2009
Abstract
Carathéodory’s theorem on small witnesses for convex hulls of sets is shown to have a natural analogue for finitely supported measures. Contrast is drawn with the much larger witnesses required for multisets, as shown by Bárány and Perles.
MSC classification
- Type
- Research Article
- Information
- Copyright
- Copyright © University College London 2010
References
[1]Bárány, I. and Larman, D. G., Convex bodies, economic cap coverings, random polytopes. Mathematika 35 (1988), 274–291.CrossRefGoogle Scholar
[2]Bárány, I. and Perles, M., The Caratheodory number for the k-core. Combinatorica 10(2) (1990), 185–194.CrossRefGoogle Scholar
[4]Carathéodory, C., Über den Variabilitätsbereich der Koeffizienten von Potenzreihen, die gegebene Werte nicht annehmen. Math. Ann. 64 (1907), 95–115.CrossRefGoogle Scholar
[5]Carathéodory, C., Über den Variabilitätsbereich der Fourier’schen Konstanten von positiven harmonischen Funktionen. Rend. Circ. Mat. Palermo 32 (1911), 193–217.CrossRefGoogle Scholar
[6]Danzer, L., Grünbaum, B. and Klee, V., Helly’s Theorem and its Relatives (Proceedings Symposia in Pure Mathematics, Volume VII Convexity), American Mathematical Society (Providence, RI, 1963), 101–181.Google Scholar
[7]Dupin, C., Application de Géometrie et de Méchanique à la Marine, aux Ponts et Chaussées (1822).Google Scholar
[8]Leichtweiss, K., Über ein Formel Blaschkes zur Affinoberfläche. Studia Sci. Math. Hungar. 21 (1986), 453–474.Google Scholar
[10]Rado, R., A theorem on general measure. J. London Math. Soc. 21 (1946), 291–300.CrossRefGoogle Scholar
[11]Schutt, C. and Werner, E., The convex floating body. Math. Scand. 66 (1990), 275–290.CrossRefGoogle Scholar
[12]Stancu, A., The floating body problem. Bull. London Math. Soc. 38 (2006), 839–846.CrossRefGoogle Scholar