Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T05:15:59.041Z Has data issue: false hasContentIssue false

RANDOM SUBSETS OF SELF-AFFINE FRACTALS

Published online by Cambridge University Press:  10 December 2009

Kenneth Falconer
Affiliation:
Mathematical Institute, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS, U.K. (email: [email protected])
Jun Miao
Affiliation:
Department of Mathematics, East China Normal University, 3663 Zhong Shan North Road, Shanghai 200062, China (email: [email protected])
Get access

Abstract

We find the almost-sure Hausdorff and box-counting dimensions of random subsets of self-affine fractals obtained by selecting subsets at each stage of the hierarchical construction in a statistically self-similar manner.

Type
Research Article
Copyright
Copyright © University College London 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Athreya, K. B. and Ney, P. E., Branching Processes, Springer (Berlin, 1972).CrossRefGoogle Scholar
[2]Barański, K., Hausdorff dimension of the limit sets of some planar geometric constructions. Adv. Math. 210 (2007), 215245.CrossRefGoogle Scholar
[3]Dekking, F. M. and Meester, R. W. J., On the structure of Mandelbrot’s percolation process and other random Cantor sets. J. Stat. Phys. 58 (1990), 11091126.CrossRefGoogle Scholar
[4]Edgar, G. A., Fractal dimension of self-affine sets: some examples. Rend. Circ. Mat. Palermo (2) Suppl. 28 (1992), 341358.Google Scholar
[5]Falconer, K. J., The Geometry of Fractal Sets, Cambridge University Press (Cambridge, 1985).CrossRefGoogle Scholar
[6]Falconer, K. J., Random fractals. Math. Proc. Cambridge Philos. Soc. 100 (1986), 559582.CrossRefGoogle Scholar
[7]Falconer, K. J., The Hausdorff dimension of self-affine fractals. Math. Proc. Cambridge Philos. Soc. 103 (1988), 169179.CrossRefGoogle Scholar
[8]Falconer, K. J., The dimension of self-affine fractals II. Math. Proc. Cambridge Philos. Soc. 111 (1992), 339350.CrossRefGoogle Scholar
[9]Falconer, K. J., Fractal Geometry: Mathematical Foundations and Applications, 2nd edn., John Wiley (Chichester, 2003).CrossRefGoogle Scholar
[10]Falconer, K. J. and Miao, J., Dimensions of self-affine fractals and multifractals generated by upper-triangular matrices. Fractals 15 (2007), 289299.CrossRefGoogle Scholar
[11]Gatzouras, D. and Lalley, S. P., Statistically self-affine sets: Hausdorff and box dimensions. J. Theoret. Probab. 7 (1994), 437468.CrossRefGoogle Scholar
[12]Graf, S., Statistically self-similar fractals. Probab. Theor. Related Fields 74 (1987), 357392.CrossRefGoogle Scholar
[13]Hutchinson, J. E., Fractals and self-similarity. Indiana Univ. Math. J. 30 (1981), 713747.CrossRefGoogle Scholar
[14]Jordan, T., Pollicott, M. and Simon, K., Hausdorff dimension for randomly perturbed self affine attractors. Comm. Math. Phys. 207 (2007), 519544.CrossRefGoogle Scholar
[15]Käenmäki, A. and Shmerkin, P., Overlapping self-affine sets of Kakeya type. Ergod. Th & Dynam. Sys. 29 (2009), 941965.CrossRefGoogle Scholar
[16]Mandelbrot, B. B., The Fractal Geometry of Nature, W. H. Freeman (New York, 1982).Google Scholar
[17]Mauldin, R. D. and Williams, S. C., Random recursive constructions: asymptotic geometric and topological properties. Trans. Amer. Math. Soc. 295 (1986), 325346.CrossRefGoogle Scholar
[18]Miao, J. J., The geometry of self-affine fractals. PhD Thesis, University of St Andrews, 2008.Google Scholar
[19]Przytycki, F. and Urbanski, M., On the Hausdorff dimension of some fractals. Studia Math. 93 (1989), 155186.CrossRefGoogle Scholar
[20]Rogers, C. A., Hausdorff Measures, Cambridge University Press (Cambridge, 1998).Google Scholar
[21]Solomyak, B., Measure and dimensions for some fractal families. Math. Proc. Cambridge Philos. Soc. 124 (1998), 531546.CrossRefGoogle Scholar
[22]Williams, D., Probability with Martingales, 2nd edn., Cambridge University Press (Cambridge, 1991).CrossRefGoogle Scholar
[23]Yu, J. and Ding, L., Hausdorff dimensions of generalized statistically self-affine fractals. Acta Math. Sci. Ser. B. Engl. Ed. 24 (2004), 421433.CrossRefGoogle Scholar