No CrossRef data available.
Article contents
ON EMBEDDINGS OF FINITE METRIC SPACES IN ln∞
Published online by Cambridge University Press: 10 December 2009
Abstract
We prove that for any given integer c≥0 any metric space on n points may be isometrically embedded into ln−c∞ provided n is large enough.
MSC classification
- Type
- Research Article
- Information
- Copyright
- Copyright © University College London 2010
References
[1]Alon, N., Eigenvalues, geometric expanders, sorting in rounds, and Ramsey theory. Combinatorica 6(3) (1986), 207–219.CrossRefGoogle Scholar
[2]Averkov, G. and Düvelmeyer, N., Embedding metric spaces into normed spaces and estimates of metric capacity. Monatsh. Math. 152(3) (2007), 197–206.CrossRefGoogle Scholar
[3]Ball, K., Isometric embedding in lp-spaces. European J. Combin. 11(4) (1990), 305–311.Google Scholar
[4]Spencer, J., Asymptotic lower bounds for Ramsey functions. Discrete Math. 20(1) (1977/78), 69–76.Google Scholar
[5]Wolfe, D., Imbedding a finite metric set in an N-dimensional Minkowski space. Nederl. Akad. Wetensch. Proc. Ser. A 70 (1967), 136–140.CrossRefGoogle Scholar