Marstrand’s theorem states that applying a generic rotation to a planar set A before projecting it orthogonally to the x-axis almost surely gives an image with the maximal possible dimension $\min(1, \dim A)$. We first prove, using the transversality theory of Peres–Schlag locally, that the same result holds when applying a generic complex linear-fractional transformation in $PSL(2,\mathbb{C})$ or a generic real linear-fractional transformation in $PGL(3,\mathbb{R})$. We next show that, under some necessary technical assumptions, transversality locally holds for restricted families of projections corresponding to one-dimensional subgroups of $PSL(2,\mathbb{C})$ or $PGL(3,\mathbb{R})$. Third, we demonstrate, in any dimension, local transversality and resulting projection statements for the families of closest-point projections to totally-geodesic subspaces of hyperbolic and spherical geometries.