Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T02:47:01.179Z Has data issue: false hasContentIssue false

Osculating hyperplanes and a quartic combinant of the nonsingular model of the Kummer and Weddle surfaces

Published online by Cambridge University Press:  24 October 2008

R. H. Dye
Affiliation:
University of Newcastleupon Tyne

Extract

The nonsingular model of Kummer's surface, or its birational equivalent the Weddle surface, is an octavic surface F in [5], projective space of dimension 5 (11), ((10), p. 53), ((1), pp. 218, 219). F is the base variety of a net N of quadrics with a common self-polar simplex S, and has on it 32 lines. These form a single orbit under the group G, of order 32, consisting of the harmonic homologies fixing S.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Baker, H. F.Principles of geometry, vol IV (Cambridge University Press, 1925).Google Scholar
(2)Clebsch, A.Zur Theorie der binären Formen sechster Ordnung und zur Dreitheilung der hyperelliptschen Funktionen. Abh. Akad. Ges. der Wiss. zu Göttingen 14 (1869), 159.Google Scholar
(3)Dye, R. H.Osculating primes to curves of intersection in 4-space, and to certain curves in n-space. Proc. Edinburgh Math. Soc. 18 (Series II) (1972), 325338.CrossRefGoogle Scholar
(4)Dye, R. H.The hyperosculating spaces to certain curves in [n]. Proc. Edinburgh Math. Soc. 19 (Series II) (1975), 301309.CrossRefGoogle Scholar
(5)Dye, R. H.Pencils of elliptic quartics and an identification of Todd's quartic combinant. Proc. London Math. Soc. (3) 34 1977), 459478.CrossRefGoogle Scholar
(6)Edge, W. L.Baker's property of the Weddle surface. J. London Math. Soc. 32 (1957), 463466.Google Scholar
(7)Edge, W. L.A new look at the Kummer surface. Canad. J. Math. 19 (1967), 952967.Google Scholar
(8)Edge, W. L.The osculating spaces of a certain curve in [n]. Proc. Edinburgh Math. Soc. 19 (Series II) (1974), 3944.CrossRefGoogle Scholar
(9)Edge, W. L.Non-singular models of specialized Weddle surfaces. Math. Proc. Cambridge Phil. Soc. 80 (1976), 399418.CrossRefGoogle Scholar
(10)Hudson, R. W. H. T.Kummer's quartic surface (Cambridge University Press, 1905).Google Scholar
(11)Klein, F.Zur Theorie der Linienkomplexe des ersten und zweiten Grades. Math. Ann. 2 (1870), 198226.Google Scholar
(12)Room, T. G.The geometry of determinantal loci (Cambridge University Press, 1938).Google Scholar
(13)Segre, C. Encyklopädie der Mathematischen Wissensehaften. III. Geometric, Leipzig, 1912.Google Scholar
(14)Semple, J. G. and Roth, L.An introduction to algebraic geometry (Clarendon Press, Oxford, 1949).Google Scholar
(15)Semple, J. G. and Kneebone, G. T.Algebraic curves (Clarendon Press, Oxford, 1959).Google Scholar
(16)Tyrrell, J. A.Degenerate plane cubics and a theorem of Clebsch. Bull. London Math. Soc. 5 (1973), 203208.CrossRefGoogle Scholar
(17)Walker, R. J.Algebraic curves (Princeton University Press, 1950).Google Scholar