Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-25T01:14:45.465Z Has data issue: false hasContentIssue false

On motivic principal value integrals

Published online by Cambridge University Press:  01 November 2007

WILLEM VEYS*
Affiliation:
K.U. Leuven, Departement Wiskunde, Celestijnenlaan 200B, B-3001 Leuven, Belgium. email: [email protected]://www.wis.kuleuven.be/algebra/veys.htm

Abstract

Inspired by p-adic (and real) principal value integrals, we introduce motivic principal value integrals associated to multi-valued rational differential forms on smooth algebraic varieties. We investigate the natural question whether (for complete varieties) this notion is a birational invariant. The answer seems to be related to the dichotomy of the Minimal Model Program.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Abramovich, D., Karu, K., Matsuki, K. and Włodarczyk, J.. Torification and factorization of birational maps. J. Amer. Math. Soc. 15 (2002), 531572.CrossRefGoogle Scholar
[2]Aluffi, P.. Chern classes of birational varieties. Int. Math. Res. Not. 63 (2004), 33673377.CrossRefGoogle Scholar
[3]Arnold, V., Varchenko, A. and Goussein–Zadé, S.. Singularités des Applications Différentiables II (Editions Mir, Moscou, 1986).Google Scholar
[4]Batyrev, V.. Stringy Hodge numbers of varieties with Gorenstein canonical singularities. Proc. Taniguchi Symposium 1997. In Integrable Systems and Algebraic Geometry, Kobe/Kyoto 1997 (World Sci. Publ., 1999), 132.Google Scholar
[5]Bittner, F.. The universal Euler characteristic for varieties of characteristic zero. Compositio Math. 140 (2004), 10111032.CrossRefGoogle Scholar
[6]Craw, A.. An introduction to motivic integration. math.AG/9911179 (2001).Google Scholar
[7]Denef, J.. On the degree of Igusa's local zeta function. Amer. J. Math. 109 (1987), 9911008.CrossRefGoogle Scholar
[8]Denef, J.. Report on Igusa's local zeta function. Sém. Bourbaki 741, Astérisque 201/202/203 (1991), 359386.Google Scholar
[9]Denef, J. and Jacobs, Ph.. On the vanishing of principal value integrals. C. R. Acad. Sci. Paris 326 (1998), 10411046.CrossRefGoogle Scholar
[10]Denef, J. and Loeser, F.. Motivic Igusa zeta functions. J. Alg. Geom. 7 (1998), 505537.Google Scholar
[11]Denef, J. and Loeser, F.. Germs of arcs on singular algebraic varieties and motivic integration. Invent. Math. 135 (1999), 201232.CrossRefGoogle Scholar
[12]Denef, J. and Loeser, F.. Geometry on arc spaces of algebraic varieties. Proceedings of the Third European Congress of Mathematics, Barcelona 2000. Progr. Math. 201 (Birkhäuser, 2001), 327–348.CrossRefGoogle Scholar
[13]Denef, J. and Meuser, D.. A functional equation of Igusa's local zeta function. Amer. J. Math. 113 (1991), 11351152.CrossRefGoogle Scholar
[14]Hales, T.. Can p-adic integrals be computed? Contributions to Automorphic Forms, Geometry, and Number Theory (Johns Hopkins University Press, Baltimore, MD, 2004), 313329.Google Scholar
[15]Hales, T.. Orbital integrals are motivic. Proc. Amer. Math. Soc. 133 (2005), 15151525.CrossRefGoogle Scholar
[16]Hironaka, H.. Resolution of singularities of an algebraic variety over a field of characteristic zero. Ann. Math. 79 (1964), 109326.CrossRefGoogle Scholar
[17]Igusa, J.. Complex powers and asymptotic expansions I. J. Reine Angew. Math. 268/269 (1974), 110130; II, ibid. 278/279 (1975), 307–321.Google Scholar
[18]Igusa, J.. Lectures on forms of higher degree. Tata Inst. Fund. Res. Stud. Math. (1978).Google Scholar
[19]Jacobs, Ph.. Real principal value integrals. Monatsh. Math. 130 (2000), 261280.CrossRefGoogle Scholar
[20]Jacobs, Ph.. The distribution |f|λ, oscillating integrals and principal value integrals. J. Anal. Math. 81 (2000), 343372.CrossRefGoogle Scholar
[21]Kollár, J. and Mori, S.. Birational geometry of algebraic varieties. Cambridge Tracts in Mathematics 134 (Cambridge University Press, 1998).Google Scholar
[22]Kontsevich, M.. Lecture at Orsay (December 7, 1995).Google Scholar
[23]Laeremans, A.. The distribution |f|s, topological zeta functions and Newton polyhedra. Ph. D. thesis (Univ. Leuven, 1997).Google Scholar
[24]Langlands, R.. Orbital integrals on forms of SL(3), I. Amer. J. Math. 105 (1983), 465506.CrossRefGoogle Scholar
[25]Langlands, R.. Remarks on Igusa theory and real orbital integrals. The Zeta Functions of Picard Modular Surfaces (Les Publications CRM, Montréal; distributed by AMS, 1992), pp. 335–347.Google Scholar
[26]Looijenga, E.. Motivic measures. Séminaire Bourbaki 874 (2000).Google Scholar
[27]Langlands, R. and Shelstad, D.. On principal values on p–adic manifolds. Lect. Notes Math. 1041 (Springer, 1984).Google Scholar
[28]Langlands, R. and Shelstad, D.. Orbital integrals on forms of SL(3), II. Canad. J. Math. 41 (1989), 480507.CrossRefGoogle Scholar
[29]Matsuki, K.. Introduction to the Mori Program, Universitext (Springer-Verlag, 2002).CrossRefGoogle Scholar
[30]Poonen, B.. The Grothendieck ring of varieties is not a domain. Math. Res. Letters 9 (2002), 493498.CrossRefGoogle Scholar
[31]Veys, W.. Poles of Igusa's local zeta function and monodromy. Bull. Soc. Math. France 121 (1993), 545598.CrossRefGoogle Scholar
[32]Veys, W.. Zeta functions and ‘Kontsevich invariants' on singular varieties. Canad. J. Math. 53 (2001), 834865.CrossRefGoogle Scholar
[33]Veys, W.. Stringy zeta functions of Qopf–Gorenstein varieties. Duke Math. J. 120 (2003), 469514.CrossRefGoogle Scholar
[34]Veys, W.. Arc spaces, motivic integration and stringy invariants. Advanced Studies in Pure Mathematics 43 (2006), 529–572. Proceedings of “Singularity theory and its applications, Sapporo (Japan), 16–25 September 2003”.Google Scholar
[35]Wang, C.-L.. On the topology of birational minimal models. J. Differential Geom. 50 (1998), 129146.CrossRefGoogle Scholar
[36]Włodarczyk, J.. Combinatorial structures on toroidal varieties and a proof of the weak factorization theorem. Invent. Math. 154 (2003), 223331.CrossRefGoogle Scholar