Published online by Cambridge University Press: 24 October 2008
Let M be a closed, connected, orientable 3-manifold. In Row [10], Jaco and Myers [3] and Myers [7], it was pointed out that the topological type of M is closely related to the knot theory in M. Therefore it is an interesting problem to find knots in M with nice properties. Alexander proved M contains a fibred link (see [9]). Myers proved, in [7], M contains a hyperbolic knot, and, in [8], every link in M is concordant to a hyperbolic link. In this paper we consider the fibred version of his results.