Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-25T01:31:13.291Z Has data issue: false hasContentIssue false

Polynomial bounds for equivalence of quadratic forms with cube-free determinant

Published online by Cambridge University Press:  01 November 2007

RAINER DIETMANN*
Affiliation:
Institut für Algebra und Zahlentheorie, Pfaffenwaldring 57, D-70569 Stuttgart, Germany. email: [email protected]

Abstract

Given two integrally equivalent integral quadratic forms in at least three variables and with cube-free determinant, we establish an upper bound on the smallest unimodular matrix transforming one of the forms into the other. This bound is polynomial in the height of the two forms involved, confirming a conjecture of Masser for the class of forms considered.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Cassels, J. W. S.. Rational Quadratic Forms (Academic Press, London, 1978).Google Scholar
[2]Dietmann, R.. Small solutions of quadratic Diophantine equations. Proc. London Math. Soc. 86 (2003), 545582.CrossRefGoogle Scholar
[3]Grunewald, F. and Segal, D.. How to solve a quadratic equation in integers. Math. Proc. Camb. Phil. Soc. 89 (1981), 15.CrossRefGoogle Scholar
[4]Kornhauser, D. M.. On the smallest solution to the general binary quadratic equation. Acta Arith. 55 (1990), 8394.CrossRefGoogle Scholar
[5]Kornhauser, D. M.. On small solutions of the general nonsingular quadratic Diophantine equation in five and more unknowns. Math. Proc. Camb. Phil. Soc. 107 (1990), 197211.CrossRefGoogle Scholar
[6]Masser, D. W.. Search bounds for Diophantine equations. A Panorama of Number Theory or the View from Baker's Garden (Zürich, 1999), 247–259.CrossRefGoogle Scholar
[7]O'Meara, O. T.. Introduction to Quadratic Forms. Reprint of the 1973 edition. Classics in Mathematics (Springer-Verlag, 2000).Google Scholar
[8]Siegel, C. L.. Zur Theorie der quadratischen Formen. Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II (1972), 21–46.Google Scholar
[9]Straumann, S.. Das äquivalenzproblem ganzer quadratischer Formen: Einige explizite Resultate. Diplomarbeit. Universität Basel (1999).Google Scholar