Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-25T13:05:12.484Z Has data issue: false hasContentIssue false

A natural invariant algebra for the Harada-Norton group

Published online by Cambridge University Press:  24 October 2008

A. J. E. Ryba
Affiliation:
Department of Mathematics, Statistics and Computer Science, Marquette University, Milwaukee, WI 53233, U.S.A.

Extract

The Harada-Norton group is one of the twenty-six sporadic simple groups. It has order 273, 030, 912, 000, 000 = 214.36.56.7.11.19. In this paper our main objective is:

Theorem 1. The Harada-Norton group acts as a group of linear automorphisms of a 133-dimensional commutative, non-associative algebra defined over F5.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Aschbacher, M.. On the maximal subgroups of the finite classical groups. Invent. Math. 76 (1984), 469514.CrossRefGoogle Scholar
[2] Conway, J. H.. A simple construction for the Fischer–Griess monster group. Invent. Math. 79 (1985), 513540.CrossRefGoogle Scholar
[3] Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A. and Wilson, R. A.. An ATLAS of Finite Groups (Oxford University Press, 1985).Google Scholar
[4] Conway, J. H. and Norton, S. P.. Monstrous moonshine. Bull. London Math. Soc. 11 (1979), 308339.CrossRefGoogle Scholar
[5] Harada, K.. On the simple group F of order 214.36.56.7.11.19. Proc. Conf. Finite Groups, Utah, 1975, ed. Scott, W. R. and Gross, F. (Academic Press, 1976), pp. 119276.Google Scholar
[6] Jansen, C., Lux, K., Parker, R. A. and Wilson, R. A.. An ATLAS of Modular Characters, in preparation.Google Scholar
[7] Kleidman, Peter B. and Martin, Liebeck. The subgroup structure of the finite classical groups (Cambridge University Press, 1990).CrossRefGoogle Scholar
[8] Kleidman, Peter B. and Wilson, R. A.. Sporadic subgroups of finite exceptional groups of Lie type. J. Alg. 157 (1993), 316330.CrossRefGoogle Scholar
[9] Norton, S. P.. F and other simple groups (Ph.D. thesis, Cambridge, 1975).Google Scholar
[10] Norton, S. P.. On the group Fi 24. Geom. Dedicata 25 (1988), 483501.CrossRefGoogle Scholar
[11] Norton, S. P. and Wilson, R. A.. Maximal subgroups of the Harada–Norton group. J. Algebra 103 (1986), 362376.CrossRefGoogle Scholar
[12] Ryba, A. J. E.. Fibonacci representations of the symmetric groups. J. Alg. 170 (1994), 678686.CrossRefGoogle Scholar
[13] Ryba, A. J. E.. Modular moonshine? Preprint (1994).Google Scholar
[14] Ryba, A. J. E. and Wilson, R. A.. Matrix generators for the Harada–Norton group. Experimental Math. 3 (1994), 137145.CrossRefGoogle Scholar
[15] Suleiman, I. A. and Wilson, R. A.. The 3- and 5-modular characters of the covering and automorphism groups of the Higman–Sims group. J. Alg. 148 (1992), 225242.CrossRefGoogle Scholar