Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-29T04:05:23.711Z Has data issue: false hasContentIssue false

The influence of termite-induced heterogeneity on savanna vegetation along a climatic gradient in West Africa

Published online by Cambridge University Press:  11 December 2012

Arne Erpenbach*
Affiliation:
J. W. Goethe University, Institute of Ecology, Evolution and Diversity, Max-von-Laue-Str. 13 B, 60438 Frankfurt am Main, Germany
Markus Bernhardt-Römermann
Affiliation:
J. W. Goethe University, Institute of Ecology, Evolution and Diversity, Max-von-Laue-Str. 13 B, 60438 Frankfurt am Main, Germany Institute of Botany, Faculty of Biology and Preclinical Medicine, University of Regensburg, 93040 Regensburg, Germany
Rüdiger Wittig
Affiliation:
J. W. Goethe University, Institute of Ecology, Evolution and Diversity, Max-von-Laue-Str. 13 B, 60438 Frankfurt am Main, Germany Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
Adjima Thiombiano
Affiliation:
University of Ouagadougou, UFR-SVT, Department of Plant Biology and Physiology, 09 BP 848, Ouagadougou 09, Burkina Faso
Karen Hahn
Affiliation:
J. W. Goethe University, Institute of Ecology, Evolution and Diversity, Max-von-Laue-Str. 13 B, 60438 Frankfurt am Main, Germany Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
*
1Corresponding author. Present postal address: Biodiversity, Macroecology & Conservation Biogeography Group, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, Büsgenweg 1, 37077 Göttingen, Germany. Email: [email protected]

Abstract:

Termites are renowned ecosystem engineers. Their mounds have been described as an important element of savanna vegetation dynamics, but little is known about their large-scale impact on vegetation composition. To investigate the influence of termite-induced heterogeneity in savannas along a climatic gradient in West Africa termite mound vegetation was compared with adjacent savanna vegetation using 256 paired plots (size of the termite mound and a corresponding savanna area) in five protected areas from northern Burkina Faso to northern Benin. On each plot vegetation and soil sampling was performed. Additionally bioclimatic variables from the WORLDCLIM database were used. The vegetation on the mounds and the surrounding savanna differed within all study sites (DCA length of gradient 3.85 SD) and showed complete turnover along the climatic gradient (DCA length of gradient 5.99 SD). Differences between mounds and savanna were significantly related to termite-induced changes in soil parameters, specifically clay enrichment and increased cation concentrations (base saturation). On a local scale, termite-induced differences in soil conditions were found to be the most important factor affecting mound vegetation, while on a regional scale, annual precipitation showed the strongest significant correlations. However, with increasing precipitation, differences between mounds and the surrounding matrix became more pronounced, and the contribution of mounds to local phytodiversity increased. Eleven plant species were identified as characteristic termite mound species. In the more humid parts of the gradient, more characteristic plant species were found that may benefit from favourable soil conditions, good water availability, and a low fire impact in the mound microhabitat.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ABE, S. S., YAMAMOTO, S. & WAKATSUKI, T. 2009. Physicochemical and morphological properties of termite (Macrotermes bellicosus) mounds and surrounding pedons on a toposequence of an inland valley in the southern Guinea savanna zone of Nigeria. Soil Science and Plant Nutrition 55:514522.CrossRefGoogle Scholar
ARSHAD, M. A. 1982. Influence of the termite Macrotermes michaelseni (Sjost) on soil fertility and vegetation in a semi-arid savannah ecosystem. Agro-Ecosystems 8:4758.CrossRefGoogle Scholar
BLOESCH, U. 2008. Thicket clumps: a characteristic feature of the Kagera savanna landscape, East Africa. Journal of Vegetation Science 19:3144.CrossRefGoogle Scholar
COLE, M. M. 1963. Vegetation and geomorphology in Northern Rhodesia: an aspect of the distribution of the savanna of Central Africa. The Geographical Journal 129:290305.CrossRefGoogle Scholar
COLONVAL-ELENKOV, E. & MALAISSE, F. 1975. Remarques sur l'écomophologie de la flore termetophile du Haut-Shaba (Zaïre). Contribution à l'étude de l'écosysteme forêt claire (Miombo), Note 20. Bulletin de la Societé Royale de Botanique de Belgique 108:167181.Google Scholar
CONNELL, J. H. 1978. Diversity in tropical rain forests and coral reefs. Science 199:1302.CrossRefGoogle ScholarPubMed
DANGERFIELD, J. M., MCCARTHY, T. S. & ELLERY, W. N. 1998. The mound-building termite Macrotermes michaelseni as an ecosystem engineer. Journal of Tropical Ecology 14:507520.CrossRefGoogle Scholar
DE VISSER, S. N., FREYMANN, B. P. & SCHNYDER, H. 2008. Trophic interactions among invertebrates in termitaria in the African savanna: a stable isotope approach. Ecological Entomology 33:758764.CrossRefGoogle Scholar
DEWALT, S. J., SCHNITZER, S. A., CHAVE, J., BONGERS, F., BURNHAM, R. J., CAI, Z. Q., CHUYONG, G., CLARK, D. B., EWANGO, C. E. N., GERWING, J. J., GORTAIRE, E., HART, T., IBARRA-MANRIQUEZ, G., ICKES, K., KENFACK, D., MACIA, M. J., MAKANA, J. R., MARTINEZ-RAMOS, M., MASCARO, J., MOSES, S., MULLER-LANDAU, H. C., PARREN, M. P. E., PARTHASARATHY, N., PEREZ-SALICRUP, D. R., PUTZ, F. E., ROMERO-SALTOS, H. & THOMAS, D. 2009. Annual rainfall and seasonality predict pan-tropical patterns of liana density and basal area. Biotropica 42:309317.CrossRefGoogle Scholar
DUFRENE, M. & LEGENDRE, P. 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs 67:345366.Google Scholar
EILERTSEN, O., ØKLAND, R. H., ØKLAND, T. & PEDERSEN, O. 1990. Data manipulation and gradient length estimation in DCA ordination. Journal of Vegetation Science 1:261270.CrossRefGoogle Scholar
FANSHAWE, D. B. 1968. The vegetation of Zambian termitaria. Kirkia 6:169179.Google Scholar
FLEMING, P. A. & LOVERIDGE, J. P. 2003. Miombo woodland termite mounds: resource islands for small vertebrates? Journal of Zoology 259:161168.CrossRefGoogle Scholar
HAHN-HADJALI, K. 1998. Les groupements végétaux des savanes de sud est du Burkina Faso (Afrique de l'ouest). Etudes sur la flore et la végétation du Burkina Faso et des pays avoisinants 3:379.Google Scholar
HEDGES, L. V., GUREVITCH, J. & CURTIS, P. S. 1999. The meta-analysis of response ratios in experimental ecology. Ecology 80:11501156.CrossRefGoogle Scholar
HIJMANS, R. J., CAMERON, S. E., PARRA, J. L., JONES, P. G. & JARVIS, A. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25:19651978.CrossRefGoogle Scholar
HILL, M. O. & GAUCH, H. G. 1980. Detrended correspondence analysis: an improved ordination technique. Plant Ecology 42:4758.CrossRefGoogle Scholar
HOLT, J. A. & LEPAGE, M. 2000. Termites and soil properties. Pp. 389407 in Abe, T., Bignell, D. E. & Higashi, M. (eds.). Termites: evolution, sociality, symbioses, ecology. Kluwer, Dordrecht. 488 pp.CrossRefGoogle Scholar
HUSTON, M. 1979. A general hypothesis of species diversity. American Naturalist 113:81101.CrossRefGoogle Scholar
JOSEPH, G. S., CUMMING, G. S., CUMMING, D. H. M., MAHLANGU, Z., ALTWEGG, R. & SEYMOUR, C. L. 2011. Large termitaria act as refugia for tall trees, deadwood and cavity-using birds in a miombo woodland. Landscape Ecology 26:439448.CrossRefGoogle Scholar
JOUQUET, P., TRAORE, S., CHOOSAI, C., HARTMANN, C. & BIGNELL, D. 2011. Influence of termites on ecosystem functioning. Ecosystem services provided by termites. European Journal of Soil Biology 47:215222.CrossRefGoogle Scholar
KORB, J. 2011. Termite mound architecture, from function to construction. Pp. 349374 in Bignell, D. E., Roisin, Y. & Lo, N. T. (eds.). Biology of termites: a modern synthesis. Springer, Heidelberg. 590 pp.Google Scholar
LAWSON, G. W. & JENIK, J. 1967. Observations on microclimate and vegetation interrelationships on Accra plains (Ghana). Journal of Ecology 55:773785.CrossRefGoogle Scholar
LEVICK, S. R., ASNER, G. P., KENNEDY-BOWDOIN, T. & KNAPP, D. E. 2010. The spatial extent of termite influences on herbivore browsing in an African savanna. Biological Conservation 143:24622467.CrossRefGoogle Scholar
MALAISSE, F. 1976. De l'origine de la flore termetophile du Haute-Shaba (Zaïre). Pp. 505–513 in Miège, J. & Stork, A. L. (eds.): Comptes rendus de la VIIIe réunion de l'AETFAT, vol. 2. Boissiera 24b:422 pp.Google Scholar
MCGEOCH, M. A., VAN RENSBURG, B. J. & BOTES, A. 2002. The verification and application of bioindicators: a case study of dung beetles in a savanna ecosystem. Journal of Applied Ecology 39:661672.CrossRefGoogle Scholar
MOE, S. R., MOBAEK, R. & NARMO, A. K. 2009. Mound building termites contribute to savanna vegetation heterogeneity. Plant Ecology 202:3140.CrossRefGoogle Scholar
MUJINYA, B. B., VAN RANST, E., VERDOODT, A., BAERT, G. & NGONGO, L. M. 2010. Termite bioturbation effects on electro-chemical properties of Ferralsols in the Upper Katanga (DR Congo). Geoderma 158:233241.CrossRefGoogle Scholar
OKALI, D. U. U., HALL, J. B. & LAWSON, G. W. 1973. Root distribution under a thicket clump on Accra Plains, Ghana – its relevance to clump localization and water relations. Journal of Ecology 61:439454.CrossRefGoogle Scholar
OKULLO, P. & MOE, S. R. 2012a. Termite activity, not grazing, is the main determinant of spatial variation in savanna herbaceous vegetation. Journal of Ecology 100:232241.CrossRefGoogle Scholar
OKULLO, P. & MOE, S. R. 2012b. Large herbivores maintain termite-caused differences in herbaceous species diversity patterns. Ecology 93:20952103.CrossRefGoogle ScholarPubMed
PRINGLE, R. M., DOAK, D. F., BRODY, A. K., JOCQUÉ, R. & PALMER, T. M. 2010. Spatial pattern enhances ecosystem functioning in an African savanna. PLoS Biology 8:e1000377.CrossRefGoogle Scholar
REIJ, C., TAPPAN, G. & BELEMVIRE, A. 2005. Changing land management practices and vegetation on the central plateau of Burkina Faso (1968–2002). Journal of Arid Environments 63:642659.CrossRefGoogle Scholar
RUELLE, J. E. 1970. A revision of the termites of the genus Macrotermes from the Ethiopian region (Isoptera: Termitidae). Bulletin of the British Museum (Natural History) Entomology 24:365444.CrossRefGoogle Scholar
SCHMIDT, M., KREFT, H., THIOMBIANO, A. & ZIZKA, G. 2005. Herbarium collections and field data based plant diversity maps for Burkina Faso. Diversity and Distributions 11:509516.CrossRefGoogle Scholar
SCHMITZ, A. 1963. Aperçu sur les groupements végétaux du Katanga. Bulletin de la Societé Royale de Botanique de Belgique 96:233447.Google Scholar
SILESHI, G. W., ARSHAD, M. A., KONATE, S. & NKUNIKA, P. O. Y. 2010. Termite-induced heterogeneity in African savanna vegetation: mechanisms and patterns. Journal of Vegetation Science 21:923937.CrossRefGoogle Scholar
SMITH, B. & WILSON, J. B. 1996. A consumer's guide to evenness indices. OIKOS 76:7082.CrossRefGoogle Scholar
SOLBRIG, O. T., MEDINA, E. & SILVA, J. F. 1996. Determinants of tropical savannas. Pp. 3141 in Solbrig, O. T., Medina, E. & Silva, J. F. (eds.). Biodiversity and savanna ecosystem processes: a global perspective. Springer, Berlin. 233 pp.CrossRefGoogle Scholar
TAPPAN, G. G., SALL, M., WOOD, E. C. & CUSHING, M. 2004. Ecoregions and land cover trends in Senegal. Journal of Arid Environments 59:427462.CrossRefGoogle Scholar
TRAORÉ, S., NYGÅRD, R., GUINKO, S. & LEPAGE, M. 2008a. Impact of Macrotermes termitaria as a source of heterogeneity on tree diversity and structure in a Sudanian savannah under controlled grazing and annual prescribed fire (Burkina Faso). Forest Ecology and Management 255:23372346.CrossRefGoogle Scholar
TRAORÉ, S., TIGABU, M., OUEDRAOGO, S. J., BOUSSIM, J. I., GUINKO, S. & LEPAGE, M. G. 2008b. Macrotermes mounds as sites for tree regeneration in a Sudanian woodland (Burkina Faso). Plant Ecology 198:285295.CrossRefGoogle Scholar
TROLL, C. 1936. Termitensavannen. Pp. 275–312 in Louis, H. & Panzer, W. (eds.). Festschrift zur Vollendung des sechzigsten Lebensjahres Norbert Krebs. J. Engelhorn, Stuttgart. 368 pp.Google Scholar
TUOMISTO, H. 2010. A consistent terminology for quantifying species diversity? Yes, it does exist. Oecologia 164:853860.CrossRefGoogle ScholarPubMed
VAN DER PLAS, F., HOWISON, R., REINDERS, J., FOKKEMA, W. & OLFF, H. 2012. Functional traits of trees on and off termite mounds: understanding the origin of biotically-driven heterogeneity in savannas. Journal of Vegetation Science. DOI: http://dx.doi.org/10.1111/j.1654–1103.2012.01459.xGoogle Scholar
VINCKE, C., DIÉDHIOU, I. & GROUZIS, M. 2010. Long term dynamics and structure of woody vegetation in the Ferlo (Senegal). Journal of Arid Environments 74:268276.CrossRefGoogle Scholar
WHITE, F. 1983. The vegetation of Africa: a descriptive memoir to accompany the UNESCO/AETFAT/UNSO vegetation map of Africa. Natural Resources Research 20. UNESCO, Paris. 356 pp.Google Scholar
WOOD, T. G. 1988. Termites and the soil environment. Biology and Fertility of Soils 6:228236.CrossRefGoogle Scholar
WOOD, T. G. & SANDS, W. A. 1978. The role of termites in ecosystems. Pp. 245–292 in Brian, M. V. (ed.). Production ecology of ants and termites. Cambridge University Press, Cambridge. 426 pp.Google Scholar
ZOMER, R. J., TRABUCCO, A., BOSSIO, D. A. & VERCHOT, L. V. 2008. Climate change mitigation: a spatial analysis of global land suitability for clean development mechanism afforestation and reforestation. Agriculture, Ecosystems & Environment 126:6780.CrossRefGoogle Scholar