Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-12-01T04:55:07.204Z Has data issue: false hasContentIssue false

Note on support-concentrated Borel measures

Published online by Cambridge University Press:  09 April 2009

Wolfgang Adamski
Affiliation:
Mathematisches Institut der Universität MünchenTheresienstrasse 39 D-8000 München 2 West, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Every τ-smooth Borel measure is support-concentrated. We shall prove in this note that the converse of this statement is not true, in general. Furthermore, we shall give some conditions assuring that a support-concentrated Borel measure be τ-smooth.

1980 Mathematics subject classification (Amer. Math. Soc.): 28 C 15.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1980

References

Adamski, W. (1977), ‘τ-smooth Borel measures on topological spaces’, Math. Nachr. 78, 97107.CrossRefGoogle Scholar
Armstrong, T. E. and Prikry, K. (1978), ‘Residual measures’, Illinois J. Math. 22, 6478.CrossRefGoogle Scholar
Billingsley, P. (1968), Convergence of probability measures (Wiley, New York).Google Scholar
Dykes, N. (1970), ‘Generalizations of realcompact spaces’, Pacific J. Math. 33, 571581.CrossRefGoogle Scholar
Gardner, R. J. (1975), ‘The regularity of Borel measures and Borel measure-compactness’, Proc. London Math. Soc. (3) 30, 95113.CrossRefGoogle Scholar
Hager, A. W., Reynolds, G. D. and Rice, M. D. (1972), ‘Borel-complete topological spaces’, Fund. Math. 75, 135143.CrossRefGoogle Scholar
Halmos, P. R. (1950), Measure theory (Van Nostrand, Princeton).CrossRefGoogle Scholar
Meyer, P. A. (1966), Probability and potentials (Blaisdell, Waltham, Mass.).Google Scholar
Okada, S. (1979), ‘Supports of Borel measures’, J. Austral Math. Soc. (Ser. A) 27, 221231.CrossRefGoogle Scholar
Okada, S. and Okazaki, Y. (1978), ‘On measure-compactness and Borel measure-compactness’, Osaka J. Math. 15, 183191.Google Scholar
Oxtoby, J. C. (1971), Mass und Kategorie (Springer-Verlag, Berlin).CrossRefGoogle Scholar
Steen, L. A. and Seebach, J. A. (1978), Counterexamples in topology (Springer-Verlag, New York).CrossRefGoogle Scholar
Willard, S. (1970), General topology (Addison-Wesley, Reading, Mass.).Google Scholar