NOTE ON SUPPORT-CONCENTRATED BOREL MEASURES

WOLFGANG ADAMSKI

(Received 17 June; revised 30 October 1979)

Communicated by E. Strzelecki

Abstract

Every τ -smooth Borel measure is support-concentrated. We shall prove in this note that the converse of this statement is not true, in general. Furthermore, we shall give some conditions assuring that a support-concentrated Borel measure be τ -smooth.

1980 Mathematics subject classification (Amer. Math. Soc.): 28 C 15.

In this note X will always be a topological space. We denote by $\mathcal{G}(X)$, $\mathcal{F}(X)$, $\mathcal{B}(X)$ the collection of all open, closed, Borel subsets of X, respectively. By a Borel measure (on X) we understand a nonnegative, finite, countably additive set-function defined on $\mathcal{B}(X)$. Let $\mathcal{M}_+(X)$ denote the family of all Borel measures on X.

If $\mu \in \mathcal{M}_+(X)$ then the set

supp
$$\mu := X - \bigcup \{G \in \mathcal{G}(X): \mu(G) = 0\}$$

= $\{x \in X: \mu(G) > 0 \text{ for every open neighbourhood } G \text{ of } x\}$

is called the support of μ .

 $\mu \in \mathcal{M}_+(X)$ is said to be

- (i) support-concentrated if μ (supp μ) = $\mu(X)$;
- (ii) $[weakly]\tau$ -smooth if $\mu(\bigcup_{\alpha} G_{\alpha}) = \sup_{\alpha} \mu(G_{\alpha})$ for every increasing net (G_{α}) in $\mathcal{G}(X)$ with $\bigcup_{\alpha} G_{\alpha} = X$;
- (iii) regular if $\mu(B) = \sup \{ \mu(F) : F \in \mathcal{F}(X), F \subset B \}$ for all $B \in \mathcal{B}(X)$.

We remark that Okada (1979) uses the terminology 'the strong support of μ exists' for expressing that μ is support-concentrated. It is an immediate consequence of the definitions that every τ -smooth Borel measure is support-concentrated. However, the converse of this statement is, in general, not true, as the following example shows.

EXAMPLE 1. On the one hand, consider the compact Hausdorff space $X = \{0, 1\}^{\aleph 1}$. X is separable (Willard (1970), Theorem 16.4), but not Borel-complete (Hager and others (1972), Corollary 2.10). Thus, by Gardner (1975), Theorem 5.7, there exists a non- τ -smooth $v \in \mathcal{M}_+(X)$.

On the other hand, let X be the Novak space (Steen and Seebach (1978), Counter-example 112). X is a completely regular Hausdorff space which is separable and countably compact, but not realcompact. Thus, by Dykes (1970), Corollary 1.10, X is not α -realcompact and hence, by Gardner (1975), Theorem 3.5, there exists a regular, non- τ -smooth $v \in \mathcal{M}_+(X)$.

In either case, let $\{x_n\}$ be a countable dense subset of X and put

$$\mu := v + \sum_{n=1}^{\infty} 2^{-n} \delta_{x_n},$$

where δ_{x_n} denotes the Dirac measure at x_n . Then μ is a non- τ -smooth Borel measure on X with supp $\mu = X$. In the case of the Novak space μ is even regular.

Let v be the Dieudonné measure on $[0,\Omega)$, Ω denoting the first uncountable ordinal. Then v is a regular Borel measure which is not support-concentrated (cf. Okada (1979), Example 2.3). On the other hand, the following example shows that there also exist support-concentrated (even τ -smooth) Borel measures that are not regular. Thus support-concentration is a property of Borel measures being incomparable with regularity.

EXAMPLE 2. Let X := [0,1] and let Q be a subset of X such that $\lambda_*(Q) = 0$ and $\lambda^*(Q) = 1$ where λ denotes the Lebesgue measure (Halmos (1950), Theorem E, p. 70). Let X be equipped with the topology generated by Q and the usual topology τ_0 on X, that is $\mathscr{G}(X) = \{G_1 \cup (Q \cap G_2) : G_1, G_2 \in \tau_0\}$. Then X is a Hausdorff space being second countable but not regular. Furthermore we have

$$\mathcal{B}(X) = \{(B_1 \cap Q) \cup (B_2 - Q) : B_1, B_2 \tau_0 \text{-Borel sets}\}.$$

For any two τ_0 -Borel sets B_1 , B_2 put

$$\mu((B_1 \cap Q) \cup (B_2 - Q)) := \lambda(B_1).$$

By this definition an element $\mu \in \mathcal{M}_+(X)$ is unambiguously defined. Now $\mu(X-Q)=0$ and

$$\inf\{\mu(G): X - Q \subset G \in \mathcal{G}(X)\} \geqslant \inf\{\mu(G_1): X - Q \subset G_1 \in \tau_0\}$$
$$= \inf\{\lambda(G_1): X - Q \subset G_1 \in \tau_0\} = \lambda^*(X - Q) = 1,$$

hence μ is not regular. However, μ is τ -smooth, since X is second countable.

REMARK. The preceding two examples answer two questions that have been raised in the Introduction of Okada (1979).

Let $\mu \in \mathcal{M}_+(X)$ and $B_0 \in \mathcal{B}(X)$. Then the measure $\mu_{B_0} \in \mathcal{M}_+(X)$ is defined by $\mu_{B_0}(B) := \mu(B_0 \cap B)$ for $B \in \mathcal{B}(X)$. The following proposition shows that τ -smoothness can be characterized by means of support-concentration.

PROPOSITION 1. For a measure $\mu \in \mathcal{M}_+(X)$ the following three conditions are equivalent:

- (1) μ is τ -smooth.
- (2) Every measure $v \in \mathcal{M}_+(X)$ being absolutely continuous with respect to μ is support-concentrated.
 - (3) $\mu_{G_2-G_1}$ is support-concentrated for all $G_1, G_2 \in \mathcal{G}(X)$ with $G_1 \subset G_2$.

PROOF. (1) \rightarrow (2) As μ is τ -smooth, so is every $\nu \in \mathcal{M}_+(X)$ being absolutely continuous with respect to μ . Thus (2) is obvious.

- $(2) \rightarrow (3)$ Trivial.
- $(3) \to (1)$ Let (G_{α}) be an increasing net in $\mathscr{G}(X)$. Put $G := \bigcup_{\alpha} G_{\alpha}$ and $a := \sup_{\alpha} \mu(G_{\alpha})$. Choose a sequence (α_n) such that $\lim_{n} \mu(G_{\alpha_n}) = a$. Then $G^* := \bigcup_{n} G_{\alpha_n} \subset G$ and $\mu(G^*) = a$. It is easy to see that $\mu_{G-G^*}(G_{\alpha}) = 0$ for all α . This implies $G \subset X$ —supp μ_{G-G^*} , hence, by $(3), \mu_{G-G^*}(G) = 0$ and thus $\mu(G) = \mu(G^*) = a$.

X is said to be a τ -space (Adamski (1977), p. 99) if every $\mu \in \mathcal{M}_+(X)$ is τ -smooth. According to Gardner (1975), Theorem 5.1, the τ -spaces are identical with the HB-spaces introduced by Gardner.

The following result is a direct consequence of Proposition 1.

PROPOSITION 2. X is a τ -space if and only if every Borel measure on X is support-concentrated.

In the remaining part of this note we shall give some sufficient conditions that a support-concentrated Borel measure be τ -smooth. At first we consider regular Borel measures with a Lindelöf support.

PROPOSITION 3. Let $\mu \in \mathcal{M}_+(X)$ be regular and assume that supp μ be Lindelöf. Then the following three conditions are equivalent:

- (1) μ is τ -smooth.
- (2) μ is support-concentrated.
- (3) There exists a Lindelöf set $S \in \mathcal{B}(X)$ such that $\mu(S) = \mu(X)$.

PROOF. (1) \rightarrow (2) Obvious.

- $(2) \rightarrow (3)$ Put $S := \sup \mu$.
- $(3) \to (1)$ Let (G_{α}) be an increasing net in $\mathscr{G}(X)$ such that $\bigcup_{\alpha} G_{\alpha} = X$. As S is Lindelöf, we can find a sequence (α_n) such that $S \subset \bigcup_{n} G_{\alpha_n}$ This implies $\mu(X) = \mu(S)$

 $\leq \mu(\bigcup_n G_{\alpha_n}) \leq \sup_{\alpha} \mu(G_{\alpha})$. Thus μ is weakly τ -smooth. Now (1) follows from Gardner (1975), Theorem 4.3.

Example 1 shows that neither the regularity of μ nor the assumption that supp μ be Lindelöf can be omitted from Proposition 3. X is said to be an SL-space (Okada (1979), Definition 4.1) if supp μ is Lindelöf for every $\mu \in \mathcal{M}_+(X)$. Furthermore, X is called a Borel-regular space (Okada and Okazaki (1978), p. 184) if every $\mu \in \mathcal{M}_+(X)$ is regular.

COROLLARY 1. Let X be a Borel-regular SL-space. Then every support-concentrated Borel measure on X is τ -smooth.

It follows from Choquet's capacity theorem (Meyer (1966), III, T 19) that X is a Borel-regular space if every $G \in \mathcal{G}(X)$ is an $\mathcal{F}(X)$ -Souslin set (in particular, if every $G \in \mathcal{G}(X)$ is an F_{σ} -set). Furthermore, by Okada (1979), Theorem 4.2, every metacompact space is an SL-space. Thus, in particular, every metrizable space is a Borel-regular SL-space, and we obtain from Proposition 3:

PROPOSITION 4. Let X be a metrizable space. For $\mu \in \mathcal{M}_+(X)$ the following three conditions are equivalent:

- (1) μ is τ -smooth.
- (2) μ is support-concentrated.
- (3) There exists a separable set $S \in \mathcal{B}(X)$ such that $\mu(S) = \mu(X)$.

We remark that condition (3) of Proposition 4 is Billingsley's definition of a τ -smooth (Billingsley uses the term 'separable') Borel measure on a metrizable space (compare Billingsley (1968), p. 234).

For 0, 1-valued measures we have the following result.

PROPOSITION 5. Every 0, 1-valued support-concentrated Borel measure is \u03c4-smooth.

PROOF. Let $\mu \in \mathcal{M}_+(X)$ be 0, 1-valued and assume that there is an increasing net (G_α) in $\mathcal{G}(X)$ such that $\sup_\alpha \mu(G_\alpha) < \mu(\bigcup_\alpha G_\alpha)$. This implies $\mu(\bigcup_\alpha G_\alpha) = 1$ and $\mu(G_\alpha) = 0$ for all α , hence $\bigcup_\alpha G_\alpha \subset X$ -supp μ and therefore $\mu(X$ -supp $\mu) = 1$. Thus μ is not support-concentrated.

Finally, we shall consider residual measures. A Borel measure is called a *residual measure*, if every nowhere dense Borel set has measure zero (or equivalently, if every Borel set of first category has measure zero). On the other hand, a Borel measure is

called a category measure if the Borel sets of measure zero are exactly the Borel sets of first category.

PROPOSITION 6. Every support-concentrated residual Borel measure is τ -smooth.

PROOF. Let μ be a support-concentrated residual Borel measure on X and let $G_1, G_2 \in \mathcal{G}(X)$ with $G_1 \subset G_2$. According to Proposition 1 it suffices to show that $\nu := \mu_{G_2 - G_1}$ be support-concentrated.

Put $H_0: = X - \text{supp } v = \bigcup \{G \in \mathcal{G}(X) : \mu(G \cap (G_2 - G_1)) = 0\},$ $H_1: = X - \text{supp } \mu \text{ and } B: = H_0 \cap (G_2 - G_1).$ It is easy to see that the following two inclusions are valid:

- (*) int $B \subset H_1$;
- (**) $B-\operatorname{int} B \subset \partial (H_0 \cap G_1)$.

From (*) we obtain $\mu(\text{int }B)=0$, since μ is support-concentrated. From (**) we conclude $\mu(B-\text{int }B)=0$, since $\partial(H_0\cap G_1)$ is nowhere dense and μ is residual. Thus we have $\mu(B)=0$, that is $\nu(H_0)=0$.

COROLLARY 2. Every category Borel measure is τ -smooth.

PROOF. Let $\mu \in \mathcal{M}_+(X)$ be a category measure. In view of Proposition 6 it suffices to prove that μ is support-concentrated. Since every open μ -null set is an open set of first category, Banach's category theorem (Oxtoby (1971), Satz 16.1) implies that $X - \sup \mu$ is a set of first category, too, and hence a μ -null set.

It follows from Proposition 6 respectively Corollary 2 that in the paper of Armstrong and Prikry (1978) both the equivalence of the assertions (a) and (b) within Proposition 1 and the statement of Corollary 1 are valid for arbitrary topological spaces.

References

- W. Adamski (1977), '\tau-smooth Borel measures on topological spaces', Math. Nachr. 78, 97-107.
- T. E. Armstrong and K. Prikry (1978), 'Residual measures', *Illinois J. Math.* 22, 64-78.
- P. Billingsley (1968), Convergence of probability measures (Wiley, New York).
- N. Dykes (1970), 'Generalizations of realcompact spaces', Pacific J. Math. 33, 571-581.
- R. J. Gardner (1975), 'The regularity of Borel measures and Borel measure-compactness', Proc. London Math. Soc. (3) 30, 95-113.
- A. W. Hager, G. D. Reynolds and M. D. Rice (1972), 'Borel-complete topological spaces', Fund. Math. 75, 135-143.
- P. R. Halmos (1950), Measure theory (Van Nostrand, Princeton).
- P. A. Meyer (1966), Probability and potentials (Blaisdell, Waltham, Mass.).

- S. Okada (1979), 'Supports of Borel measures', J. Austral Math. Soc. (Ser. A) 27, 221-231.
- S. Okada and Y. Okazaki (1978), 'On measure-compactness and Borel measure-compactness', Osaka J. Math. 15, 183-191.
- J. C. Oxtoby (1971), Mass und Kategorie (Springer-Verlag, Berlin).
- L. A. Steen and J. A. Seebach (1978), Counterexamples in topology (Springer-Verlag, New York).
- S. Willard (1970), General topology (Addison-Wesley, Reading, Mass.).

Mathematisches Institut der Universität München Theresienstrasse 39 D-8000 München 2 West Germany