Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-18T23:58:57.543Z Has data issue: false hasContentIssue false

Special groups whose isometry relation is a finite union of cosets

Published online by Cambridge University Press:  12 March 2014

Vincent Astier*
Affiliation:
Universitat Konstanz, Fachbereich Mathematik und Statistik, Fach D203, D-78457 Konstanz, Germany, E-mail: [email protected]

Abstract

0-stable ℵ0-categorical linked quaternionic mappings are studied and are shown to correspond (in some sense) to special groups which are ℵ0-stable, ℵ0-categorical, satisfy AP(3) and have finite 2-symbol length. They are also related to special groups whose isometry relation is a finite union of cosets, which are then considered on their own, as well as their links with pseudofinite, profinite and weakly normal special groups.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Andradas, Carlos, Bröcker, Ludwig, and Jesús, M. Ruiz, Constructible sets in real geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 33, Springer-Verlag, Berlin, 1996.CrossRefGoogle Scholar
[2]Arason, Jon Kristinn and Pfister, Albrecht, Beweis des Krullschen Durchschnittsatzes für den Wittring, Inventiones Mathematicae, vol. 12 (1971), pp. 173176.CrossRefGoogle Scholar
[3]Astier, Vincent, Some model-theoretic results in the algebraic theory of quadratic forms, Annals of Pure and Applied Logic, vol. 112 (2001), no. 2-3, pp. 189223.CrossRefGoogle Scholar
[4]Baur, Walter, Cherlin, Gregory, and Macintyre, Angus, Totally categorical groups and rings, Journal of Algebra, vol. 57 (1979), no. 2, pp. 407440.CrossRefGoogle Scholar
[5]Becher, Karim Johannes and Hoffmann, Detlev W., Symbol lengths in Milnor K-theory, Homology, Homotopy and Applications, vol. 6 (2004), no. 1, pp. 1731 (electronic).CrossRefGoogle Scholar
[6]Cherlin, G., Harrington, L., and Lachlan, A. H., 0-categorical, ℵ0-stable structures, Annals of Pure and Applied Logic, vol. 28 (1985), no. 2, pp. 103135.CrossRefGoogle Scholar
[7]Dickmann, M., Anneaux de Witt abstraits et groupes spéciaux, Séminaire de structures algébriques ordonnées, vol. 42, Paris VII – CNRS, Logique, Prépublications, 1993.Google Scholar
[8]Dickmann, M. A. and Miraglia, F., Special groups: Boolean-theoretic methods in the theory of quadratic forms, Memoirs of the American Mathematical Society, vol. 145 (2000), no. 689, pp. xvi+247.CrossRefGoogle Scholar
[9]Dickmann, M. A. and Miraglia, F., Bounds for the representation of quadratic forms, Journal of Algebra, vol. 268 (2003), no. 1, pp. 209251.CrossRefGoogle Scholar
[10]Fisher, Edward R., Abelian structures. I, Abelian group theory (Proceedings of the Second New Mexico State University Conference, Las Cruces, N.M., 1976), Lecture Notes in Mathematics, vol. 616, Springer, Berlin, 1977, pp. 270322.Google Scholar
[11]Garavaglia, Steven, Decomposition of totally transcendental modules, this Journal, vol. 45 (1980), no. 1, pp. 155164.Google Scholar
[12]Gute, Hans B. and Reuter, K. K., The last word on elimination of quantifiers in modules, this Journal, vol. 55 (1990), no. 2, pp. 670673.Google Scholar
[13]Hodges, Wilfrid, Model theory, Encyclopedia of Mathematics and its Applications, vol. 42, Cambridge University Press, Cambridge, 1993.CrossRefGoogle Scholar
[14]Hrushovski, U. and Pillay, A., Weakly normal groups, Logic colloquium '85 (Orsay, 1985), Studies in Logic and the Foundations of Mathematics, vol. 122, North-Holland, Amsterdam, 1987, pp. 233244.CrossRefGoogle Scholar
[15]Jensen, Christian U. and Lenzing, Helmut, Model-theoretic algebra with particular emphasis on fields, rings, modules, Algebra, Logic and Applications, vol. 2, Gordon and Breach Science Publishers, New York, 1989.Google Scholar
[16]Kahn, B., Quelques remarques sur le u-invariant, Séminaire de Théorie des Nombres de Bordeaux. Série 2, vol. 2 (1990), no. 1, pp. 155161.Google Scholar
[17]de Lima, Arileide Lira, Les groupes spéciaux, aspects algébriques et combinatoires de la théorie des espaces d'ordres abstraits, Ph.D. thesis, University Paris 7, 1997.Google Scholar
[18]Mariano, H. L. and Miraglia, F., Profinite structures are retracts of ultraproducts of finite structures, Reports on Mathematical Logic, vol. 42 (2007), pp. 169182.Google Scholar
[19]Marshall, Murray, Abstract Witt rings, Queen's Papers in Pure and Applied Mathematics, vol. 57, Queen's University, Kingston, Ont., 1980.Google Scholar
[20]Marshall, Murray, Spaces of orderings. IV, Canadian Journal of Mathematics. Journal Canadien de Mathématiques, vol. 32 (1980), no. 3, pp. 603627.CrossRefGoogle Scholar
[21]Marshall, Murray, Spaces of orderings and abstract real spectra, Lecture Notes in Mathematics, vol. 1636, Springer-Verlag, Berlin, 1996.CrossRefGoogle Scholar
[22]Marshall, Murray and Yucas, Joseph, Linked quaternionic mappings and their associated Witt rings, Pacific Journal of Mathematics, vol. 95 (1981), no. 2, pp. 411425.CrossRefGoogle Scholar
[23]Merkur'ev, A. S., Simple algebras and quadratic forms, Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya, vol. 55 (1991), no. 1, pp. 218224.Google Scholar
[24]Mináč, Ján and Wadsworth, Adrian R., The u-invariant for algebraic extensions, K-theory and algebraic geometry: connections with quadratic forms and division algebras (Santa Barbara, CA, 1992). Proceedings of Symposia in Pure Mathematics, vol. 58, American Mathematical Society, Providence, RI, 1995, pp. 333358.Google Scholar
[25]Pillay, Anand and Srour, Gabriel, Closed sets and chain conditions in stable theories, this Journal, vol. 49 (1984), no. 4, pp. 13501362.Google Scholar
[26]Prest, Mike, Model theory and modules, London Mathematical Society Lecture Note Series, vol. 130, Cambridge University Press, Cambridge, 1988.CrossRefGoogle Scholar