Electropolymerization is a promising approach to produce thin films of active organic conjugated materials on a desired conducting substrate. In this work, an electropolymerization study has been carried out on two diketopyrrolopyrrole (DPP)-based monomers 2,5-bis(2-butyloctyl)-3,6-di(furan-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione (BO-DPPF) and 2,5-bis(2-butyloctyl)-3,6-di(thiophen-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione (BO-DPPT). These monomers consist of thiophene and furan heterocyclic moieties attached to a DPP core with a common solubilizing alkyl chain (butyl-octyl). The properties of these monomers were analyzed via differential scanning calorimetry, thermogravimetric analysis, UV–Vis spectrometry (UV) and photoluminescence. Cyclic voltammetry (CV) studies indicate the presence of irreversible oxidation and reduction reactions. The electropolymerization of BO-DPPF and BO-DPPT electron-deficient monomers to form polymer films on a glassy carbon electrode is achieved by applying a potential between −2 V and 2 V versus ferrocene for up to 50 cycles. The properties of the polymers were investigated using the cyclic voltammetry (CV) technique.