Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-15T23:26:40.529Z Has data issue: false hasContentIssue false

Defects enhanced photocatalytic performances in SrTiO3 using laser-melting treatment

Published online by Cambridge University Press:  13 December 2016

Liu Gu
Affiliation:
School of Engineering and Technology, China University of Geosciences, Beijing 100083, People’s Republic of China; and State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People’s Republic of China
Hehe Wei
Affiliation:
State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People’s Republic of China
Zhijian Peng*
Affiliation:
School of Engineering and Technology, China University of Geosciences, Beijing 100083, People’s Republic of China
Hui Wu*
Affiliation:
State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People’s Republic of China
*
a) Address all correspondence to these authors. e-mail: [email protected]
b) e-mail: [email protected]
Get access

Abstract

SrTiO3 is an important photocatalyst for hydrogen evolution under solar light, a promising way to solve energy shortage. However, a rapid and efficient method to synthesize high-performance SrTiO3 used for this purpose still remains a challenge. In this work, we successfully prepared SrTiO3 catalyst with narrowed band gap through a rapid laser-melting method of a limited reaction time to seconds. The prepared SrTiO3 catalyst, which has a band gap of 3.05 eV, presents enhanced photocatalytic performance for hydrogen evolution under visible light. The evolution rate of laser-melted SrTiO3 is approximately 3.5 times higher than that of pristine SrTiO3. In addition, the magnetism in laser-melted SrTiO3 is also enhanced, which could not be observed in pristine SrTiO3, confirming the defective structure of the obtained laser-melted SrTiO3. The proposed laser-melting method will be a promising way to rapidly and efficiently synthesize homogeneous, solar-driven SrTiO3 photocatalyst for hydrogen evolution with rich defects and thus high-performance.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Xiaobo Chen

References

REFERENCES

Chen, X., Shen, S., Guo, L., and Mao, S.S.: Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 110, 6503 (2010).Google Scholar
Rao, S.S., Lee, Y.F., Prater, J.T., Smirnov, A.I., and Narayan, J.: Laser annealing induced ferromagnetism in SrTiO3 single crystal. Appl. Phys. Lett. 105, 042403 (2014).Google Scholar
Macaraig, L., Chuangchote, S., and Sagawa, T.: Electrospun SrTiO3 nanofibers for photocatalytic hydrogen generation. J. Mater. Res. 29, 123 (2014).Google Scholar
Benthem, K.V., Elsasser, C., and French, R.H.: Bulk electronic structure of SrTiO3:SrTiO3: Experiment and theory. J. Appl. Phys. 90, 6156 (2001).Google Scholar
Queisser, H.J. and Haller, E.E.: Defects in semiconductors: Some fatal, some vital. Science 281, 945 (1998).Google Scholar
Jiao, Z.B., Chen, T., Xiong, J.Y., Wang, T., Lu, G.X., Ye, J.H., and Bi, Y.P.: Visible-light-driven photoelectrochemical and photocatalytic performances of Cr-doped SrTiO3/TiO2 heterostructured nanotube arrays. Sci. Rep. 3, 2720 (2013).Google Scholar
Wu, G.L., Li, P., Xu, D.B., Luo, B.F., Hong, Y.Z., Shi, W.D., and Liu, C.B.: Hydrothermal synthesis and visible-light-driven photocatalytic degradation for tetracycline of Mn-doped SrTiO3 nanocubes. Appl. Surf. Sci. 333, 39 (2015).Google Scholar
Ham, Y.L., Hisatomi, T., Goto, Y., Moriya, Y., Sakata, Y., Yamakata, A., Kubota, J., and Domen, K.: Flux-mediated doping of SrTiO3 photocatalysts for efficient overall water splitting. J. Mater. Chem. A 4, 3027 (2016).Google Scholar
Xian, T., Yang, H., Di, L.J., Ma, J.Y., Zhang, H.M., and Dai, J.F.: Photocatalytic reduction synthesis of SrTiO3–graphene nanocomposites and their enhanced photocatalytic activity. Nanoscale Res. Lett. 9, 327 (2014).Google Scholar
Ribeiro, M.: Quasiparticle theoretical characterization of electronic and optical properties of the photocatalytic material Ti3−δO4N. J. Mater. Res. 30, 2934 (2015).CrossRefGoogle Scholar
Sasaki, Y., Nemoto, H., Saito, K., and Kudo, A.: Solar water splitting using powdered photocatalysts driven by Z-schematic interparticle electron transfer without an electron mediator. J. Phys. Chem. C 113, 17536 (2009).Google Scholar
Liu, Y.N., Wang, R.X., Yang, Z.K., Du, H., Jiang, Y.F., Shen, C.C., Liang, K., and Xu, A.W.: Enhanced visible-light photocatalytic activity of Z-scheme graphitic carbon nitride/oxygen vacancy-rich zinc oxide hybrid photocatalysts. Chin. J. Catal. 36, 2135 (2015).CrossRefGoogle Scholar
Chen, H.C., Huang, C.W., Wu, J.C.S., and Lin, S.T.: Theoretical investigation of the metal-doped SrTiO3 photocatalysts for water splitting. J. Phys. Chem. C 116, 7897 (2012).CrossRefGoogle Scholar
Xie, T.H., Sun, X.Y., and Lin, J.: Enhanced photocatalytic degradation of RhB driven by visible light-induced MMCT of Ti(IV)–O–Fe(II) formed in Fe-doped SrTiO3 . J. Phys. Chem. C 112, 9753 (2008).Google Scholar
Kawasaki, S., Nakatsuji, K., Yoshinobu, J., Komori, F., Takahashi, R., Lippma, M., Mase, K., and Kudo, A.: Epitaxial Rh-doped SrTiO3 thin film photocathode for water splitting under visible light irradiation. Appl. Phys. Lett. 101, 033910 (2012).CrossRefGoogle Scholar
Yang, J., Wang, D., Han, H., and Li, C.: Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Acc. Chem. Res. 46, 1900 (2013).CrossRefGoogle ScholarPubMed
Ronning, C., Borschel, C., Geburt, S., and Niepelt, R.: Ion beam doping of semiconductor nanowires. Mater. Sci. Eng., R 70, 30 (2010).Google Scholar
Venkatesan, M., Fitzgerald, C.B., and Coey, J.M.D.: Thin films: Unexpected magnetism in a dielectric oxide. Nature 430, 630 (2004).Google Scholar
Shein, I.R. and Ivanovskii, A.L.: First principle prediction of vacancy-induced magnetism in non-magnetic perovskite SrTiO3 . Phys. Lett. A 371, 155 (2007).Google Scholar
Zhang, Z., Hu, J., Xu, Z., Qin, H., Sun, L., Gao, F., Zhang, Y., and Jiang, M.: Room-temperature ferromagnetism and ferroelectricity in nanocrystalline PbTiO3 . Solid State Sci. 13, 1391 (2011).Google Scholar
Warren, W.L., Vanheusden, K., Dimos, D., Pike, G.E., and Tuttle, B.A.: Links between electrical and optical fatigue in Pb(Zr,Ti)O3 thin films. J. Am. Ceram. Soc. 79, 1714 (1996).Google Scholar
Hong, N.H., Sakai, J., and Brize, V.: Observation of ferromagnetism at room temperature in ZnO thin films. J. Phys.: Condens. Matter 19, 036219 (2007).Google Scholar
Tan, H.Q., Zhao, Z., Zhu, W.B., Coker, E.N., Li, B.S., Zheng, M., Yu, W.X., Fan, H.Y., and Sun, Z.C.: Oxygen vacancy enhanced photocatalytic activity of pervoskite SrTiO3 . ACS Appl. Mater. Interfaces 6, 19184 (2014).CrossRefGoogle ScholarPubMed
Xie, K., Umezawa, N., Zhang, N., Reunchan, P., Zhang, Y.J., and Ye, J.H.: Self-doped SrTiO3−δ photocatalyst with enhanced activity for artificial photosynthesis under visible light. Energy Environ. Sci. 4, 4211 (2011).Google Scholar
Yu, W., Ou, G., Si, W.J., Qi, L.H., and Wu, H.: Defective SrTiO3 synthesized by arc-melting. Chem. Commun. 51, 15685 (2015).Google Scholar
Xu, W.F., Yang, J., Bai, W., Tan, K., Zhang, Y.Y., and Tang, X.D.: Oxygen vacancy induced photoluminescence and ferromagnetism in SrTiO3 thin films by molecular beam epitaxy. J. Appl. Phys. 114, 154106 (2013).Google Scholar
Wang, G., Ling, Y., and Li, Y.: Oxygen-deficient metal oxide nanostructures for photoelectrochemical water oxidation and other applications. Nanoscale 4, 6682 (2012).CrossRefGoogle ScholarPubMed
Lv, Y., Zhu, Y., and Zhu, Y.: Enhanced photocatalytic performance for the BiPO4−x nanorod induced by surface oxygen vacancy. J. Phys. Chem. C 117, 18520 (2013).Google Scholar
Bai, X., Wang, L., Zong, R., Lv, Y., Sun, Y., and Zhu, Y.: Performance enhancement of ZnO photocatalyst via synergic effect of surface oxygen defect and graphene hybridization. Langmuir 29, 3097 (2013).Google Scholar
Cronemeyer, D.C.: Infrared absorption of reduced rutile TiO2 single crystals. Phys. Rev. 113, 1222 (1959).Google Scholar
Ou, G., Li, D., Pan, W., Zhang, Q., Xu, B., Gu, L., Nan, C., and Wu, H.: Arc-melting to narrow the bandgap of oxide semiconductors. Adv. Mater. 27, 2589 (2015).Google Scholar
Molaei, R., Bayati, M.R., Alipour, H.M., Nori, S., and Narayan, J.: Enhanced photocatalytic efficiency in zirconia buffered n-NiO/p-NiO single crystalline heterostructures by nanosecond laser treatment. J. Appl. Phys. 113, 233708 (2013).Google Scholar
Zhang, S.G., Guo, D.L., Wang, M.J., Javed, M.S., and Hu, C.G.: Magnetism in SrTiO3 before and after UV irradiation. Appl. Surf. Sci. 335, 115 (2015).Google Scholar
Rabuffetti, F.A., Kim, H.S., Enterkin, J.A., Wang, Y.M., Lanier, C.H., Marks, L.D., Poeppelmeier, K.R., and Stair, P.C.: Synthesis-dependent first-order Raman scattering in SrTiO3 nanocubes at room temperature. Chem. Mater. 20, 5628 (2008).Google Scholar
Silva, L.F., Avansi, W. Jr, Andre, J., Ribeiro, C., Moreira, M.L., Longo, E., and Mastelaro, V.R.: Long-range and short-range structures of cube-like shape SrTiO3 powders: Microwave-assisted hydrothermal synthesis and photocatalytic activity. Phys. Chem. Chem. Phys. 15, 12386 (2013).Google Scholar
Jiang, X.D., Zhang, Y.P., Jiang, J., Rong, Y.S., Wang, Y.C., Wu, Y.C., and Pan, C.X.: Characterization of oxygen vacancy associates within hydrogenated TiO2: A positron annihilation study. J. Phys. Chem. C 116, 22619 (2012).Google Scholar
Chen, X. and Mao, S.S.: Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev. 107, 2891 (2007).CrossRefGoogle ScholarPubMed
Sun, T. and Lu, M.: Band-structure modulation of SrTiO3 by hydrogenation for enhanced photoactivity. Appl. Phys. A: Mater. Sci. Process. 108, 171 (2012).Google Scholar
Miot, C., Husson, E., Proust, C., Erre, R., and Coutures, J.P.: Residual carbon evolution in BaTiO3 ceramics studied by XPS after ion etching. J. Eur. Ceram. Soc. 18, 339 (1998).Google Scholar
Lv, Y., Yao, W., Ma, X., Pan, C., Zong, R., and Zhu, Y.: The surface oxygen vacancy induced visible activity and enhanced UV activity of a ZnO1−x photocatalyst. Catal. Sci. Technol. 3, 3136 (2013).Google Scholar
Chambers, S.A., Droubay, T., Kaspar, T.C., Gutowski, M., and van Schilfgaarde, M.: Accurate valence band maximum determination for SrTiO3 (001). Surf. Sci. 554, 81 (2004).Google Scholar
Aiura, Y., Hase, I., Bando, H., Yasue, T., Saitoh, T., and Dessau, D.S.: Photoemission study of the metallic state of lightly electron-doped SrTiO3 . Surf. Sci. 515, 61 (2002).CrossRefGoogle Scholar
Li, X., Yu, J.G., Low, J.X., Fang, Y.P., Xiao, J., and Chen, X.B.: Engineering heterogeneous semiconductors for solar water splitting. J. Mater. Chem. A 3, 2485 (2015).Google Scholar
Wen, J.Q., Xie, J., Chen, X.B., and Li, X.: A review on g-C3N4-based photocatalysts. Appl. Surf. Sci. 391, 72 (2016).Google Scholar
Qian, J.W., Zhao, Z.Y., Shen, Z.G., Zhang, G.L., Peng, Z.J., and Fu, X.L.: Oxide vacancies enhanced visible active photocatalytic W19O55 NMRs via strong adsorption. RSC Adv. 6, 8061 (2016).CrossRefGoogle Scholar
Zhang, Y.J., Hu, J.F., Cao, E., Sun, L., and Qin, H.W.: Vacancy induced magnetism in SrTiO3 . J. Magn. Magn. Mater. 324, 1770 (2012).Google Scholar
Lee, J.S., Xie, Y.W., Sato, H.K., Bell, C., Hikita, Y., Hwang, H.Y., and Kao, C.C.: Titanium d xy ferromagnetism at the LaAlO3/SrTiO3 interface. Nat. Mater. 12, 703 (2013).Google Scholar
Liu, F.L., Chen, X.J., Xia, Q.H., Tian, L.H., and Chen, X.B.: Ultrathin tungsten oxide nanowires: Oleylamine assisted nonhydrolytic growth, oxygen vacancies and good photocatalytic properties. RSC Adv. 5, 77423 (2015).Google Scholar