Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-18T15:24:34.688Z Has data issue: false hasContentIssue false

Enhanced visible photocatalytic activity of nitrogen doped single-crystal-like TiO2 by synergistic treatment with urea and mixed nitrates

Published online by Cambridge University Press:  08 December 2016

Chenxi Li
Affiliation:
School of Engineering and Technology, China University of Geosciences, Beijing 100083, People’s Republic of China
Zengying Zhao*
Affiliation:
School of Science, China University of Geosciences, Beijing 100083, People’s Republic of China
Hamukwaya Shindume Lomboleni
Affiliation:
School of Science, China University of Geosciences, Beijing 100083, People’s Republic of China
Hongwei Huang
Affiliation:
School of Materials Science and Technology, China University of Geosciences, Beijing 100083, People’s Republic of China
Zhijian Peng
Affiliation:
School of Engineering and Technology, China University of Geosciences, Beijing 100083, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

N-doped single-crystal-like TiO2 is claimed to be a very promising material among various catalytic. In this paper, N-doped single-crystal-like TiO2 (N-S-TiO2) samples were firstly prepared by molten salt method with urea and mixed nitrates as synergistic doping agents, therein, the mixed nitrates works also as a morphology modifier to form a single-crystal-like structure in the sample. The nitrogen content in the N-S-TiO2 sample could be improved because of the adding of NaNO3 and KNO3 mixed nitrates compared with using urea as a single nitrogen source. UV–Vis absorption spectroscopy analysis indicated that the nitrogen doped TiO2 has a red shift of the light absorption edge. The presence of N–O bonds on the surface of the N-S-TiO2 samples could be confirmed by x-ray photoelectron spectroscopy. The degradation efficiency of N-S-TiO2 to methylene blue under visible light is the best compared with different TiO2 samples without the treatment of mixed nitrates.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Xiaobo Chen

References

REFERENCES

Perez, E., Vittorio, L., Torres, M.F., and Sham, E.: Nitrogen doped TiO2 photoactive in visible light. Materia-Rio De Janeiro 20(3), 561 (2015).Google Scholar
Primo, A. and Garcia, H.: Solar photocatalysis for environment remediation. New Future Dev. Catal.: Sol. Photocatal. 6, 145 (2013).Google Scholar
Fujishima, A. and Honda, K.: Electrochemical photocatalysis of water at semiconductor electrode. Nature 238(5358) (1972).Google Scholar
Minsoli, I., Phillohidis, N., Poulios, I., and Sotiropoulos, S.: Photoelectrochemical characterisation of thermal and particulate titanium dioxide electrodes. J. Appl. Electrochem. 36(4), 463 (2006).Google Scholar
Fujishima, A. and Zhang, X.: Titanium dioxide photocatalysis: Present situation and future approaches. C. R. Chim. 9(5), 750 (2006).Google Scholar
Fujishima, A., Rao, T.N., and Tryk, D.A.: Titanium dioxide photocatalysis. J. Photochem. Photobiol., C 1(1), 1 (2000).Google Scholar
Varghese, O.K., Paulose, M., LaTempa, T.J., and Grimes, C.A.: High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels. Nano Lett. 9(2), 731 (2009).Google Scholar
Yu, J., Wang, Y., and Xiao, W.: Enhanced photoelectrocatalytic performance of SnO2/TiO2 rutile composite films. J. Mater. Chem. A 1(36), 10727 (2013).Google Scholar
Yang, J., Zhang, X., Li, B., Liu, H., Sun, P., Wang, C., Wang, L., and Liu, Y.: Photocatalytic activities of heterostructured TiO2-graphene porous microspheres prepared by ultrasonic spray pyrolysis. J. Alloys Compd. 584(1), 180 (2014).CrossRefGoogle Scholar
Qiu, B., Xing, M., and Zhang, J.: Mesoporous TiO2 nanocrystals grown in situ on graphene aerogels for high photocatalysis and lithium-ion batteries. J. Am. Chem. Soc. 136(16), 5852 (2014).Google Scholar
Li, C., Chen, G., Sun, J., Rao, J., Han, Z., Hu, Y., and Zhou, Y.: A novel mesoporous single-crystal-like Bi2WO6 with enhanced photocatalytic activity for pollutants degradation and oxygen production. ACS Appl. Mater. Interfaces 7(46), 25716 (2015).Google Scholar
Yu, Y., Zhang, J., Wu, X., Zhao, W., and Zhang, B.: Nanoporous single-crystal-like Cd x Zn1−x S nanosheets fabricated by the cation-exchange reaction of inorganic–organic hybrid ZnS-amine with cadmium ions. Angew. Chem., Int. Ed. 51(4), 897 (2012).Google Scholar
Kuang, Q. and Yang, S.: Template synthesis of single-crystal-like porous SrTiO3 nanocube assemblies and their enhanced photocatalytic hydrogen evolution. ACS Appl. Mater. Interfaces 5(9), 3683 (2013).Google Scholar
Zheng, X., Kuang, Q., Yan, K., Qiu, Y., Qiu, J., and Yang, S.: Mesoporous TiO2 single crystals: Facile shape-, size-, and phase-controlled growth and efficient photocatalytic performance. ACS Appl. Mater. Interfaces 5(21), 11249 (2013).CrossRefGoogle ScholarPubMed
Sivaram, V., Crossland, E.J.W., Leijtens, T., Noel, N.K., Alexander-Webber, J., Docampo, P., and Snaith, H.J.: Observation of annealing-induced doping in TiO2 mesoporous single crystals for use in solid state dye sensitized solar cells. J. Phys. Chem. C 118(4), 1821 (2014).Google Scholar
Dvoranova, D., Brezova, V., Mazur, M., and Malati, M.A.: Investigations of meta-doped titanium dioxide photocatalysis. Appl. Catal., B 37(2), 91 (2002).Google Scholar
Hashimoto, K., Irie, H., and Fujishima, A.: TiO2 photocatalysis: A historical overview and future prospects. Jpn. J. Appl. Phys. 44(12), 8269 (2005).Google Scholar
Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., and Taga, Y.: Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293(5528), 269 (2001).CrossRefGoogle ScholarPubMed
Asahi, R. and Morikawa, T.: Nitrogen complex species and its chemical nature in TiO2 for visible-light sensitized photocatalysis. Chem. Phys. 339(1), 57 (2007).CrossRefGoogle Scholar
Yin, S., Yamaki, H., Komatsu, M., Zhang, Q., Wang, J., Tang, Q., Saito, F., and Sato, T.: Synthesis of visible-light reactive TiO2−x N y photocatalyst by mechanochemical doping. Solid State Sci. 7(12), 1479 (2005).Google Scholar
Zalas, M.: Synthesis of N-doped template-free mesoporous titania for visible light photocatalytic applications. Catal. Today 230, 91 (2014).Google Scholar
Hu, C.C., Hsu, T.C., and Lu, S.Y.: Effect of nitrogen doping on the microstructure and visible light photocatalysis of titanate nanotubes by a facile cohydrothermal synthesis via urea treatment. Appl. Surf. Sci. 280(9), 171 (2013).Google Scholar
Huang, H.W., Liu, K., Chen, K., Zhang, Y.L., Zhang, Y.H., and Wang, S.C.: Ce and F comodification on the crystal structure and enhanced photocatalytic activity of Bi2WO6 photocatalyst under visible light irradiation. J. Phys. Chem. C 118, 14379 (2014).Google Scholar
Myilsamy, M., Mahalakshmi, M., Murugesan, V., and Subha, N.: Enhanced photocatalytic activity of nitrogen and indium co-doped mesoporous TiO2 nanocomposites for the degradation of 2, 4-dinitrophenol under visible light. Appl. Surf. Sci. 342, 1 (2015).Google Scholar
Liu, F.l., Yan, X.d., Chen, X.j., Tian, L.h., Xia, Q.h., and Chen, X.B.: Mesoporous TiO2 nanoparticles terminated with carbonate-like groups: Amorphous/crystalline structure and visible-light photocatalytic activity. Catal. Today 264, 243 (2016).Google Scholar
Yan, Y., Chen, T.R., Zou, Y.C., and Wang, Y.: Biotemplated synthesis of Au loaded Sn-doped TiO2 hierarchical nanorods using nanocrystalline cellulose and their applications in photocatalysis. J. Mater. Res. 31, 1383 (2016).CrossRefGoogle Scholar
Cheng, X., Yu, X., Xing, Z., and Yang, L.: Enhanced visible light photocatalytic activity of mesoporous anatase TiO2 codoped with nitrogen and chlorine. Int. J. Photoenergy 4(1), 1 (2012).Google Scholar
Xie, J., Bian, L., Yao, L., Hao, Y.J., and Wei, Y.: Simple fabrication of mesoporous TiO2 microspheres for photocatalytic degradation of pentachlorophenol. Mater. Lett. 91(3), 213 (2013).Google Scholar
Sathiyanarayanan, R., Alimohammadi, M., Zhou, Y., and Fichthorn, K.A.: Role of solvent in the shape-controlled synthesis of anisotropic colloidal nanostructures. J. Phys. Chem. C 115(39), 18983 (2011).Google Scholar
Sun, L., Zhao, Z., Zhou, Y., and Liu, L.: Anatase TiO2 nanocrystals with exposed {001} facets on graphene sheets via molecular grafting for enhanced photocatalytic activity. Nanoscale 4(2), 613 (2012).CrossRefGoogle ScholarPubMed
Wu, J.M. and Tang, M.L.: One-pot synthesis of N-F-Cr-doped anatase TiO2 microspheres with nearly all-(001) surface for enhanced solar absorption. Nanoscale 3(9), 3915 (2011).Google Scholar
Chen, X. and Burda, C.: Photoelectron spectroscopic investigation of nitrogen-doped titania nanoparticles. J. Phys. Chem. B 108(40), 15446 (2004).CrossRefGoogle Scholar
Jagadale, T.C., Takale, S.P., Sonawane, R.S., Joshi, H.M., and Patil, S.I.: N-doped TiO2 nanoparticle based visible light photocatalyst by modified peroxide sol–gel method. J. Phys. Chem. C 112(37), 14595 (2008).Google Scholar
Sugai, S., Watanabe, H., Kioka, T., Miki, H., and Kawasaki, K.: Chemisorption of NO on Pd (100), (111) and (110) surfaces studied by AES, UPS and XPS. Surf. Sci. 259, 109 (1991).Google Scholar
Rainer, D.R., Vesecky, S.M., Koranne, M., Oh, W.S., and Goodman, D.W.: The CO + NO reaction over Pd: A combined study using single-crystal, planar-model-supported, and high-surface-area Pd/Al2O3 catalysts. J. Catal. 167(1), 234 (1997).Google Scholar
Rodriguez, J.A., Jirsak, T., Dvorak, J., Sambasivan, S., and Fischer, D.: Reaction of NO2 with Zn and ZnO: Photoemission, XANES, and density functional studies on the formation of NO3 . J. Phys. Chem. B 104(2), 319 (2000).Google Scholar
Sathish, M., Viswanathan, B., Viswanath, R.P., and Gopinath, C.S.: Synthesis, characterization, electronic structure, and photocatalytic activity of nitrogen-doped TiO2 nanocatalyst. Chem. Mater. 17(25), 6349 (2005).Google Scholar
Yu, J.C., Zhang, L.Z., Zheng, Z., and Zhao, J.C.: Synthesis and characterization of phosphated mesoporous titanium dioxide with high photocatalytic activity. Chem. Mater. 15(11), 2280 (2003).Google Scholar
Selvam, K., Balachandran, S., Velmurugan, R., and Swaminathan, M.: Mesoporous nitrogen doped nano titania—A green photocatalyst for the effective reductive cleavage of azoxybenzenes to amines or 2-phenyl indazoles in methanol. Appl. Catal., A 413, 213 (2012).Google Scholar
Xiang, Q., Yu, J., and Jaroniec, M.: Nitrogen and sulfur co-doped TiO2 nanosheets with exposed {001} facets: Synthesis, characterization and visible-light photocatalytic activity. Phys. Chem. Chem. Phys. 13(11), 4853 (2011).Google Scholar
Ong, W.J., Tan, L.L., Chai, S.P., Yong, S.T., and Mohamed, A.R.: Self-assembly of nitrogen-doped TiO2 with exposed {001} facets on a graphene scaffold as photo-active hybrid nanostructures for reduction of carbon dioxide to methane. Nano Res. 7(10), 1528 (2014).Google Scholar
Niu, M., Cheng, D.J., and Cao, D.P.: Understanding photoelectrochemical properties of B–N codoped anatase TiO2 for solar energy conversion. J. Phys. Chem. C 117, 15911 (2013).Google Scholar
Cheng, J.Y., Chen, J., Lin, W., Liu, Y.D., and Kong, Y.: Improved visible light photocatalytic activity of fluorine and nitrogen co-doped TiO2 with tunable nanoparticle size. Appl. Surf. Sci. 332, 573 (2015).Google Scholar
Naik, B., Moon, S.Y., Kim, S.H., and Park, J.Y.: Enhanced photocatalytic generation of hydrogen by Pt-deposited nitrogen-doped TiO2 hierarchical nanostructures. Appl. Surf. Sci. 354, 347 (2015).Google Scholar
Wen, J., Li, X., Liu, W., Fang, Y., Xie, J., and Xu, Y.: Photocatalysis fundamentals and surface modification of TiO2 nanomaterials. Chin. J. Catal. 36, 2049 (2015).Google Scholar
Zhang, J.L., Wu, Y.M., Xing, M.Y., Leghari, S.A.K., and Sajjad, S.: Development of modified N doped TiO2 photocatalyst with metals, nonmetals and metal oxides. Energy Environ. Sci. 3, 715 (2010).Google Scholar
Li, X., Liu, H.L., Luo, D.L., Li, J.T., Huang, Y., Li, H.L., Fang, Y.P., Xu, Y.H., and Zhu, L.: Adsorption of CO2 on heterostructure CdS(Bi2S3)/TiO2 nanotube photocatalysts and their photocatalytic activities in the reduction of CO2 to methanol under visible light irradiation. Chem. Eng. J. 180, 151 (2012).Google Scholar