Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-17T07:36:46.607Z Has data issue: false hasContentIssue false

Morphology, mechanical and thermal properties of poly(lactic acid) (PLA)/natural rubber (NR) blends compatibilized by NR-graft-PLA

Published online by Cambridge University Press:  06 February 2017

Phijittra Sookprasert
Affiliation:
Program in Petrochemistry and Polymer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
Napida Hinchiranan*
Affiliation:
Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; and Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok 10330, Thailand
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Natural rubber (NR) is expected to enhance impact strength of poly(lactic acid) (PLA). Because the polarity difference of NR and PLA leads PLA/NR blends having phase separation and poor mechanical properties, this research aimed to synthesize NR-graft-PLA (NR–PLA) via esterification of maleated NR (NR-MAH) with PLA. The role of NR–PLA used as a compatibilizer on mechanical and thermal properties of the PLA/NR blends was studied. Maximum grafted PLA level at 66.8% (w/w) was reached when NR-MAH was esterified with PLA [2/1 (w/w) PLA/NR-MAH] catalyzed by 0.05 M 4-dimethylaminopyridine at 140 °C. The addition of 5% (w/w) NR–PLA [36.6% (w/w) grafted PLA content] into PLA/NR blend [80/20 (w/w)] increased Izod impact strength of the neat PLA plate from 28.9 J/m to 62.7 J/m due to partial miscibility of blends attested by morphology analysis and Molau test. Hydrolytic degradation of PLA/NR blends with and without the addition of NR–PLA was also examined.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Tao Xie

References

REFERENCES

Avérous, L.: Polylactic acid: Synthesis, properties and application. In Monomers, Polymers and Composites from Renewable Resource, Belgacem, M.N. and Gandini, A., eds. (Elsevier, Oxford, U.K., 2008); ch. 21, pp. 433450.Google Scholar
Bitinis, N., Verdejo, R., Cassagnau, P., and Lopez-Manchado, M.A.: Structure and properties of polylactide/natural rubber blends. Mater. Chem. Phys. 129, 823 (2011).Google Scholar
Datta, R. and Henry, M.: Review lactic acid: Recent advances in products, processes and technologies—A review. J. Chem. Technol. Biotechnol. 81, 1119 (2006).Google Scholar
Dorgan, J.R., Lehermeier, H., and Mang, M.: Thermal and rheological properties of commercial-grade poly(lactic acid)s. J. Polym. Environ. 8, 1 (2000).Google Scholar
Hassouna, F., Raquez, J.M., Addiego, F., Dubois, P., Toniazzo, V., and Ruch, D.: New approach on the development of plasticized polylactide (PLA): Grafting of poly(ethylene glycol) (PEG) via reactive extrusion. Eur. Polym. J. 47, 2134 (2011).Google Scholar
Ho, C.H., Wang, C.H., Lin, C.I., and Lee, Y.D.: Synthesis and characterization of TPO–PLA copolymer and its behavior as compatibilizer for PLA/TPO blends. Polymer 49, 3902 (2008).Google Scholar
Schmidt, S.C. and Hillmyer, M.A.: Synthesis and characterization of model polyisoprene-polylactide diblock copolymers. Macromolecules 32, 4794 (1999).CrossRefGoogle Scholar
Ma, P., Hristova-Bogaerds, D.G., Goossens, J.G.P., Spoelstra, A.B., Zhang, Y., and Lemstra, P.J.: Toughening of poly(lactic acid) by ethylene-co-vinyl acetate copolymer with different vinyl acetate contents. Eur. Polym. J. 48, 146 (2012).Google Scholar
Arrieta, M.P., López, J., López, D., Kenny, J.M., and Peponi, L.: Development of flexible materials based on plasticized electrospun PLA–PHB blends: Structural, thermal, mechanical and disintegration properties. Eur. Polym. J. 73, 433 (2015).CrossRefGoogle Scholar
D’Amico, D.A., Iglesias Montes, M.L., Manfredi, L.B., and Cyras, V.P.: Fully bio-based and biodegradable polylactic acid/poly(3-hydroxybutirate) blends: Use of a common plasticizer as performance improvement strategy. Polym. Test. 49, 22 (2016).Google Scholar
Pluta, M. and Piorkowska, E.: Tough crystalline blends of polylactide with block copolymers of ethylene glycol and propylene glycol. Polym. Test. 46, 79 (2015).Google Scholar
Juntuek, P., Ruksakulpiwat, C., Chumsamrong, P., and Ruksakulpiwat, Y.: Effect of glycidyl methacrylate-grafted natural rubber on physical properties of polylactic acid and natural rubber blends. J. Appl. Polym. Sci. 125, 745 (2012).Google Scholar
Tham, W.L., Poh, B.T., Ishak, Z.A.M., and Chow, W.S.: Epoxidized natural rubber toughened poly(lactic acid)/halloysite nanocomposites with high activation energy of water diffusion. J. Appl. Polym. Sci. 133, 42850 (2016).Google Scholar
Wang, Y., Chen, K., Xu, C., and Chen, Y.: Supertoughened biobased poly(lactic acid)-epoxidized natural rubber thermoplastic vulcanizates: Fabrication, co-continuous phase structure, interfacial in situ compatibilization, and toughening mechanism. J. Phys. Chem. B 119, 12138 (2015).Google Scholar
Chumeka, W., Pasetto, P., Pilard, J.F., and Tanrattanakul, V.: Bio-based diblock copolymers prepared from poly(lactic acid) and natural rubber. J. Appl. Polym. Sci. 132, 41426 (2015).Google Scholar
Chumeka, W., Pasetto, P., Pilard, J.F., and Tanrattanakul, V.: Bio-based triblock copolymers from natural rubber and poly(lactic acid): Synthesis and application in polymer blending. Polymer 55, 4478 (2014).Google Scholar
Sookprasert, P. and Hinchiranan, N.: Preparation of natural rubber-graft-poly(lactic acid) used as a compatibilizer for poly(lactic)/NR blends. Macromol. Symp. 345, 125 (2015).CrossRefGoogle Scholar
Nakason, C., Kaseman, A., and Supasanthitikul, P.: The graft of maleic anhydride onto natural rubber. Polym. Test. 23, 35 (2004).CrossRefGoogle Scholar
Feng, Y., Hu, Y., Yin, J., Zhao, G., and Jiang, W.: High impact poly(lactic acid)/poly(ethylene octane) blends prepared by reactive blending. Polym. Eng. Sci. 53, 389 (2013).Google Scholar
Bai, H., Bai, D., Xiu, H., Liu, H., Zhang, Q., Wang, K., Deng, H., Chen, F., Fu, Q., and Chiu, F.C.: Towards high-performance poly(L-lactide)/elastomer blends with tunable interfacial adhesion and matrix crystallization via constructing stereocomplex crystallites at the interface. RSC Adv. 4, 49374 (2014).Google Scholar
Yang, H., Cao, X., Ma, Y., An, J., Ke, Y., Liu, X., and Wang, F.: Effect of maleic anhydride grafted polybutadiene on the compatibility of polyamide 66/acrylonitrile-butadiene-styrene copolymer blend. Polym. Eng. Sci. 52, 481 (2012).Google Scholar
Huang, Y., Zhang, C., Pan, Y., Zhou, Y., Jiang, L., and Dan, Y.: Effect of NR on the hydrolytic degradation of PLA. Polym. Degrad. Stab. 98, 943 (2013).Google Scholar
Choi, K., Choi, M., Han, D., Park, T., and Ha, C.: Plasticization of poly(lactic acid) (PLA) through chemical grafting of poly(ethylene glycol) (PEG) via in situ reactive blending. Eur. Polym. J. 49, 2356 (2013).CrossRefGoogle Scholar
Kookarinrat, C. and Paoprasert, P.: Versatile one-pot synthesis of grafted-hydrogenated natural rubber. Iran. Polym. J. 24, 123 (2015).Google Scholar
Wongthong, P., Nakason, C., Pan, Q., Rempel, G.L., and Kiatkamjornwong, S.: Modification of deproteinized natural rubber via grafting polymerization with maleic anhydride. Eur. Polym. J. 49, 4035 (2013).Google Scholar
Hua, S., Chen, F., Liu, Z., Yang, W., and Yang, M.: Preparation of cellulose-graft-polylactic acid via melt copolycondensation for use in polylactic acid based composites: Synthesis, characterization and properties. RCS Adv. 6, 1973 (2016).Google Scholar
Xu, S., Held, I., Kempf, B., Mayr, H., Steglich, W., and Zipse, H.: The DMAP-catalyzed acetylation of alcohols—A mechanistic study (DMAP = 4-(dimethylamino)pyridine). Chem. –Eur. J. 11, 4751 (2005).Google Scholar
Nakason, C., Saiwaree, S., Tatun, S., and Kaesaman, A.: Rheological, thermal and morphology properties of maleated natural rubber and its reactive blending with poly(methyl methacrylate). Polym. Test. 25, 656 (2006).Google Scholar
Liu, G.C., He, Y.S., Zeng, J.B., Xu, Y., and Wang, Y.Z.: In situ formed crosslinked polyurethane toughened polylactide. Polym. Chem. 5, 2530 (2014).Google Scholar
Arayapranee, W., Prasassarakich, P., and Rempel, G.L.: Blend of poly(vinyl chloride) (PVC)/natural rubber-g-(styrene-co-methyl methacrylate) for improved impact resistance of PVC. J. Appl. Polym. Sci. 93, 1666 (2004).Google Scholar
Pisuttisap, A., Hinchiranan, N., Rempel, G.L., and Prasassarakich, P.: ABS modified with hydrogenated polystyrene-grafted-natural rubber. J. Appl. Polym. Sci. 129, 94 (2013).Google Scholar
Xu, X.Y. and Xu, X.F.: Mechanical properties and deformation behaviors of acrylonitrile-butadiene-styrene under izod impact test and uniaxial tension at various strain rates. Polym. Eng. Sci. 51, 902 (2011).Google Scholar
Yanfeng, L., Yuanliang, W., Xufeng, N., Chunhua, F., and Sujun, W.: Synthesis, characterization and biodegradation of butanediamine-grafted poly(DL-lactic acid). Eur. Polym. J. 43, 3856 (2007).Google Scholar
Jaratrotkamjorn, R., Khaokong, C., and Tanrattanakul, V.: Toughness enhancement of poly(lactic acid) by melt blending with natural rubber. J. Appl. Polym. Sci. 124, 5027 (2014).Google Scholar
Pongtanayut, K., Thongpin, C., and Santawitee, O.: The effect of rubber on morphology, thermal properties and mechanical properties of PLA/NR and PLA/ENR blends. Energy Procedia 34, 888 (2013).Google Scholar
Dechatiwong Na Ayutthaya, W. and Poompradub, S.: Thermal and mechanical properties of poly(lactic acid)/natural rubber blend using epoxidized natural rubber and poly(methyl methacrylate) as co-compatibilizers. Macromol. Res. 22, 686 (2014).Google Scholar