Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-15T13:26:20.597Z Has data issue: false hasContentIssue false

Thio-oxynitride phosphate glass electrolytes prepared by mechanical milling

Published online by Cambridge University Press:  21 May 2015

Nerea Mascaraque*
Affiliation:
Glasses Department, Instituto de Cerámica y Vidrio (CSIC), Cantoblanco, Madrid 28049, Spain
José Luis G. Fierro
Affiliation:
Group of Sustainable Energy and Chemistry, Instituto de Catálisis y Petroquímica (CSIC), Cantoblanco, Madrid 28049, Spain
Francisco Muñoz
Affiliation:
Glasses Department, Instituto de Cerámica y Vidrio (CSIC), Cantoblanco, Madrid 28049, Spain
Alicia Durán
Affiliation:
Glasses Department, Instituto de Cerámica y Vidrio (CSIC), Cantoblanco, Madrid 28049, Spain
Yusuke Ito
Affiliation:
Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
Yoshiaki Hibi
Affiliation:
Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
Ryo Harada
Affiliation:
Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
Atsutaka Kato
Affiliation:
Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
Akitoshi Hayashi
Affiliation:
Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
Masahiro Tatsumisago
Affiliation:
Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Lithium thio-phosphorus oxynitride glasses, LiPOSN, have been prepared by mechanical milling process from the mixture of Li2S and LiPON glass. The anionic substitution of oxygen by sulphur and nitrogen in the phosphate glass structure has been confirmed by 1D 31P solid state nuclear magnetic resonance and x-ray photoelectron spectroscopy. The study of thermal and electrical properties reveals a decrease in the glass transition temperature, likely due to the depolymerization of glass network by the decrease of bridging oxygens and sulphurs, along with a sharp increase in the ionic conductivity when lithium sulphide is incorporated into the oxynitride glasses. The improvement of chemical durability by the introduction of nitrogen, together with the increase in ionic conductivity up to values closed to the value of commercial LiPON thin film electrolyte, suggests that these LiPOSN glasses could be good candidates as solid electrolytes for lithium microbatteries.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ito, Y., Sakuda, A., Ohtomo, T., Hayashi, A., and Tatsumisago, M.: Preparation of Li2S–GeS2 solid electrolyte thin films using pulsed laser deposition. Solid State Ionics 236, 1 (2013).CrossRefGoogle Scholar
Sakuda, A., Hayashi, A., Ohtomo, T., Hama, S., and Tatsumisago, M.: All-solid-state lithium secondary batteries using LiCoO2 particles with pulsed laser deposition coatings of Li2S–P2S5 solid electrolytes. J. Power Sources 196, 6735 (2011).CrossRefGoogle Scholar
Sakurai, Y., Sakuda, A., Hayashi, A., and Tatsumisago, M.: Preparation of amorphous Li4SiO4–Li3PO4 thin films by pulsed laser deposition for all-solid-state lithium secondary batteries. Solid State Ionics 182, 59 (2011).CrossRefGoogle Scholar
Seo, I. and Martin, S.W.: Fast lithium ion conducting solid state thin-film electrolytes based on lithium thio-germanate materials. Acta Mater. 59, 1839 (2011).CrossRefGoogle Scholar
Yamashita, M. and Yamanaka, H.: Formation and ionic conductivity of Li2S–GeS2–Ga2S3 glasses and thin films. Solid State Ionics 158, 151 (2003).Google Scholar
Tatsumisago, M., Morimoto, H., Yamashita, H., and Minami, T.: Preparation of amorphous solid electrolytes in the system Li2S–SiS2–Li4SiO4 by mechanical milling. Solid State Ionics 136137, 483 (2000).Google Scholar
Hayashi, A., Hama, S., Morimoto, H., Tatsumisago, M., and Minami, T.: Preparation of Li2S-P2S5 amorphous solid electrolytes by mechanical milling. J. Am. Ceram. Soc. 84, 477 (2001).Google Scholar
Trevey, J.E., Gilsdorf, J.R., Miller, S.W., and Lee, S-H.: Li2S–Li2O–P2S5 solid electrolyte for all-solid-state lithium batteries. Solid State Ionics 214, 25 (2012).Google Scholar
Trevey, J.E., Jung, Y.S., and Lee, S-H.: Preparation of Li2S–GeSe2–P2S5 electrolytes by a single step ball milling for all-solid-state lithium secondary batteries. J. Power Sources 195, 4984 (2010).Google Scholar
Agostini, M., Aihara, Y., Yamada, T., Scrosati, B., and Hassoun, J.: A lithium–sulfur battery using a solid, glass-type P2S5–Li2S electrolyte. Solid State Ionics 244, 48 (2013).CrossRefGoogle Scholar
Mizuno, F., Hayashi, A., Tadanaga, K., and Tatsumisago, M.: New, highly ion-conductive crystals precipitated from Li2S-P2S5 glasses. Adv. Mater. 17, 918 (2005).Google Scholar
Tatsumisago, M. and Hayashi, A.: Superionic glasses and glass-ceramics in the Li2S-P2S5 system for all-solid-state lithium secondary batteries. Solid State Ionics 225, 342 (2012).Google Scholar
Minami, K., Hayashi, A., Ujiie, S., and Tatsumisago, M.: Electrical and electrochemical properties of glass–ceramic electrolytes in the systems Li2S–P2S5–P2S3 and Li2S–P2S5–P2O5 . Solid State Ionics 192, 122 (2011).CrossRefGoogle Scholar
Ohtomo, T., Hayashi, A., Tatsumisago, M., and Kawamoto, K.: Characteristics of the Li2O–Li2S–P2S5 glasses synthesized by the two-step mechanical milling. J. Non-Cryst. Solids 364, 57 (2013).Google Scholar
Le Sauze, A. and Marchand, R.: Chemically durable nitrided phosphate glasses resulting from nitrogen/oxygen substitution within PO4 tetrahedra. J. Non-Cryst. Solids 263264, 285 (2000).Google Scholar
Reidmeyer, M.R. and Day, D.E.: Phosphorus oxynitride glasses. J. Non-Cryst. Solids 181, 201 (1995).CrossRefGoogle Scholar
Wang, B., Kwak, B.S., Sales, B.C., and Bates, J.B.: Ionic conductivities and structure of lithium phosphorus oxynitride glasses. J. Non-Cryst. Solids 183, 297 (1995).CrossRefGoogle Scholar
Muñoz, F., Durán, A., Pascual, L., Montagne, L., Revel, B., and Rodrigues, A.C.M.: Increased electrical conductivity of LiPON glasses produced by ammonolysis. Solid State Ionics 179, 574 (2008).Google Scholar
Mascaraque, N., Fierro, J.L.G., Durán, A., and Muñoz, F.: An interpretation for the increase of ionic conductivity by nitrogen incorporation in LiPON oxynitride glasses. Solid State Ionics 233, 73 (2013).Google Scholar
Mascaraque, N., Takebe, H., Tricot, G., Fierro, J.L.G., Durán, A., and Muñoz, F.: Structure and electrical properties of a new thio-phosphorus oxynitride glass electrolyte. J. Non-Cryst. Solids 405, 159 (2014).CrossRefGoogle Scholar
Muñoz, F., Pascual, L., Durán, A., Rocherullé, J., and Marchand, R.: Alkali and alkali-lead oxynitride phosphate glasses: A comparative structural study by NMR and XPS. C. R. Chim. 5, 731 (2002).Google Scholar
Wagner, C.D., Davis, L.E., Zeller, M.V., Taylor, J.A., Raymond, R.H., and Gale, L.H.: Empirical atomic sensitivity factors for quantitative analysis by electron spectroscopy for chemical analysis. Surf. Interface Anal. 3, 211 (1981).Google Scholar
Hayashi, A., Araki, R., Tadanaga, K., Tatsumisago, M., and Minami, T.: High resolution solid state NMR studies of ionically conductive Li2S–SiS2–Li2O–P2O5 oxysulphide glasses. Phys. Chem. Glasses 40, 140 (1999).Google Scholar
Hirai, K., Tatsumisago, M., Takahashi, M., and Minami, T.: 29Si and 31P MAS-NMR spectra of Li2S-SiS2-Li3PO4 rapidly quenched glasses. J. Am. Ceram. Soc. 79, 349 (1996).Google Scholar
Minami, K., Mizuno, F., Hayashi, A., and Tatsumisago, M.: Structure and properties of the 70Li2S (30-x)P2S5 xP2O5 oxysulfide glasses and glass–ceramics. J. Non-Cryst. Solids 354, 370 (2008).Google Scholar
Brow, R.K.: Review: The structure of simple phosphate glasses. J. Non-Cryst. Solids 263264, 1 (2000).Google Scholar
Bunker, B.C., Tallant, D.R., Balfe, C.A., Kirkpatrick, R.J., Turner, G.L., and Reidmeyer, M.R.: Structure of phosphorus oxynitride glasses. J. Am. Ceram. Soc. 70, 675 (1987).CrossRefGoogle Scholar
Le Sauze, A., Montagne, L., Palavit, G., Fayon, F., and Marchand, R.: X-ray photoelectron spectroscopy and nuclear magnetic resonance structural study of phosphorus oxynitride glasses, ‘LiNaPON’. J. Non-Cryst. Solids 263264, 139 (2000).CrossRefGoogle Scholar
Veprek, S., Iqbal, S., Brunner, L.J., and Scharli, M.: Preparation and properties of amorphous phosphorus nitride prepared in a low-pressure plasma. Philos. Mag. 43, 527 (1981).Google Scholar
Marchand, R., Agliz, D., Boukbir, L., and Quemerais, A.: Characterization of nitrogen containing phosphate glasses by X-ray photoelectron spectroscopy. J. Non-Cryst. Solids 103, 35 (1988).Google Scholar
Brow, R.K., Reidmeyer, M.R., and Day, D.E.: Oxygen bonding in nitrided sodium- and lithium-metaphosphate glasses. J. Non-Cryst. Solids 99, 178 (1988).Google Scholar
Brückner, R., Chun, H-U., Goretzki, H., and Sammet, M.: XPS measurements and structural aspects of silicate and phosphate glasses. J. Non-Cryst. Solids 42, 49 (1980).Google Scholar
Foix, D., Gonbeau, D., Taillades, G., Pradel, A., and Ribes, M.: The structure of ionically conductive chalcogenide glasses: A combined NMR, XPS and ab initio calculation study. Solid State Ionics 3, 235 (2001).Google Scholar