Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-28T14:53:02.575Z Has data issue: false hasContentIssue false

Near atomic scale quantification of a diffusive phase transformation in (Zn,Mg)O/Al2O3 using dynamic atom probe tomography

Published online by Cambridge University Press:  13 April 2015

Rita Kirchhofer
Affiliation:
Metallurgical and Materials Engineering, Colorado Center for Advanced Ceramics, Colorado School of Mines, Golden, Colorado 80401, USA
David R. Diercks
Affiliation:
Metallurgical and Materials Engineering, Colorado Center for Advanced Ceramics, Colorado School of Mines, Golden, Colorado 80401, USA
Brian P. Gorman*
Affiliation:
Metallurgical and Materials Engineering, Colorado Center for Advanced Ceramics, Colorado School of Mines, Golden, Colorado 80401, USA
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The onset of a diffusive phase transformation in thin film Zn0.70Mg0.29Ga0.01O deposited on c-oriented sapphire (α-Al2O3) was explored using dynamic heating experiments in a laser pulsed atom probe tomography (APT) instrument and correlated with transmission electron microscopy (TEM). Specimens were laser irradiated using 100–1000 pJ pulse energies with initial temperatures between 50 and 300 K for up to 8.64 × 1010 pulses. Using a finite element model, it was possible to estimate the temperatures reached by the specimen during laser pulsing, which were calculated to be 300 K to above 1000 K. Due to the small sample volume, quench rates were estimated to be 1013 K/s, allowing for nanosecond temporal resolution during the in situ heating experiments. The formation of Mg-spinel (MgAl2O4) at the transparent conductive oxide/α-Al2O3 substrate interface was observed using electron diffraction and confirmed by atom probe analysis. Subnanometer spatial resolution in the atom probe data reconstructions allowed for near atomic level diffusion to be observed. This work demonstrates the feasibility of conducting these experiments in situ using a combined TEM and APT instrument.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Gault, B., Moody, M.P., de Geuser, F., Tsafnat, G., La Fontaine, A., Stephenson, L.T., Haley, D., and Ringer, S.P.: Advances in the calibration of atom probe tomographic reconstruction. J. Appl. Phys. 105, 034913 (2009).Google Scholar
Kelly, T.F. and Miller, M.K.: Invited review article: Atom probe tomography. Rev. Sci. Instrum. 78, 1 (2007).Google Scholar
Kelly, T.F., Vella, A., Bunton, J.H., Houard, J., Silaeva, E.P., Bogdanowicz, J., and Vandervorst, W.: Laser pulsing of field evaporation in atom probe tomography. Curr. Opin. Solid State Mater. Sci. 18, 8189 (2014).Google Scholar
Diercks, D.R., Kirchhofer, R., Brubaker, M., Bertness, K., Sanford, N., and Gorman, B.P.: Anisotropic field evaporation of diatomic species from oxides and nitrides. In 53rd International Field Emission Symposium, International Field Emission Society, Tuscaloosa, AL, 2012.Google Scholar
Vella, A., Houard, J., Vurpillot, F., and Deconihout, B.: Ultrafast emission of ions during laser ablation of metal for 3D atom probe. Appl. Surf. Sci. 255, 5154 (2009).CrossRefGoogle Scholar
Diercks, D.R., Gorman, B.P., Kirchhofer, R., Sanford, N., Bertness, K., and Brubaker, M.: Atom probe tomography evaporation behavior of C-axis GaN nanowires: Crystallographic, stoichiometric, and detection efficiency aspects. J. Appl. Phys. 114, 184903 (2013).Google Scholar
Vurpillot, F., Houard, J., Vella, A., and Deconihout, B.: Thermal response of a field emitter subjected to ultra-fast laser illumination. J. Phys. D: Appl. Phys. 42, 1 (2009).Google Scholar
Vella, A., Mazumder, B., Da Costa, G., and Deconihout, B.: Field evaporation mechanism of bulk oxides under ultra fast laser illumination. J. Appl. Phys. 110, 1 (2011).CrossRefGoogle Scholar
Ohtomo, A., Kawasaki, M., Ohkubo, I., Koinuma, H., Yasuda, T., and Segawa, Y.: Structure and optical properties of ZnO/Mg0.2Zn0.8O superlattices. Appl. Phys. Lett. 75, 980 (1999).Google Scholar
Maejima, K., Shibata, H., Tampo, H., Matsubara, K., and Niki, S.: Characterization of Zn1−xMgxO transparent conducting thin films fabricated by multi-cathode RF-magnetron sputtering. Thin Solid Films 518, 29492952 (2010).Google Scholar
Ke, Y., Berry, J., Parilla, P., Zakutayev, A., O’Hayre, R., and Ginley, D.: The origin of electrical property deterioration with increasing Mg concentration in ZnMgO: Ga. Thin Solid Films 520, 3697 (2012).CrossRefGoogle Scholar
Park, W.I., Yi, G-C., and Jang, H.M.: Metalorganic vapor-phase epitaxial growth and photoluminescent properties of Zn[sub 1−x]Mg[sub x]O(0≤x≤0.49) thin films. Appl. Phys. Lett. 79, 2022 (2001).Google Scholar
Sharma, A.K., Narayan, J., Muth, J.F., Teng, C.W., Jin, C., Kvit, A., Kolbas, R.M., and Holland, O.W.: Optical and structural properties of epitaxial Mgx Zn1−x O alloys. Appl. Phys. Lett. 75, 3327 (1999).Google Scholar
Ohtomo, A., Kawasaki, M., Koida, T., Masubuchi, K., Koinuma, H., Sakurai, Y., Yoshida, Y., and Yasuda, T.: Mgx Zn1-x O as a II–VI widegap semiconductor alloy. Appl. Phys. Lett. 72, 2466 (1998).Google Scholar
Bunting, E.N.: Phase equilibria in the system SiO2-ZnO-Al2O3 . J. Res. Natl. Inst. Stand. Technol. 8, 279 (1932).Google Scholar
Barry, T.I., Dinsdale, A.T., Gisby, J.A., Hallstedt, B., Hillert, M., Jonsson, S., Sundman, B., and Taylor, J.R.: The compound energy model for ionic solutions with applications to solid oxides. J. Phase Equilib. 13, 459 (1992).Google Scholar
Sampath, S.K., Kanhere, D., and Pandey, R.: Electronic structure of spinel oxides: Zinc aluminate and zinc gallate. J. Phys.: Condens. Matter 11, 3635 (1999).Google Scholar
De Graef, M. and McHenry, M.E.: Structure of Materials an Introduction to Crystallography, Diffraction, and Symmetry, 1st ed. (Cambridge Univeristy Press, Cambridge, England, 2007); p. 276.Google Scholar
Ball, J.A., Pirzada, M., Grimes, R.W., Zacate, M.O., Price, D.W., and Uberuaga, B.P.: Predicting lattice parameter as a function of cation disorder in MgAl2O4 spinel. J. Phys.: Condens. Matter 17, 7621 (2005).Google Scholar
Thompson, K., Lawrence, D., Larson, D.J., Olson, J.D., Kelly, T.F., and Gorman, B.P.: In situ site-specific specimen preparation for atom probe tomography. Ultramicroscopy 107, 131 (2007).Google Scholar
Miller, M.K. and Forbes, R.G.: Atom probe tomography. Mater. Charact. 60, 461 (2009).Google Scholar
Gorman, B.P., Diercks, D., Salmon, N., Stach, E., Amador, G., and Hartfield, C.: Hardware and techniques for cross- correlative TEM and atom probe analysis. Microsc. Today. 16, 42 (2008).Google Scholar
Müller, M., Smith, G.D.W., Gault, B., Grovenor, C.R.M., and Mu, M.: Compositional nonuniformities in pulsed laser atom probe tomography analysis of compound semiconductors. Appl. Phys. Lett. 111, 1 (2012).Google Scholar
Moody, M.P., Tang, F., Gault, B., Ringer, S.P., and Cairney, J.M.: Atom probe crystallography: Characterization of grain boundary orientation relationships in nanocrystalline aluminium. Ultramicroscopy 111, 493 (2011).Google Scholar
Kirchhofer, R., Teague, M.C., and Gorman, B.P.: Thermal effects on mass and spatial resolution during laser pulse atom probe tomography of cerium oxide. J. Nucl. Mater. 436, 23 (2013).Google Scholar
Khan, E.H., Weber, M.H., and McCluskey, M.D.: Formation of isolated Zn vacancies in ZnO single crystals by absorption of ultraviolet radiation: A combined study using positron annihilation, photoluminescence, and mass spectroscopy. Phys. Rev. Lett. 111, 017401 (2013).Google Scholar
Wilkinson, D.S.: Mass Transport in Solids and Fluids, 1st ed. (Cambridge Univeristy Press, Cambridge, England, 2000); p. 59.Google Scholar
Zhang, P., Debroy, T., and Seetharaman, S.: Interdiffusion in the MgO-Al203 spinel with or without some dopants. Metall. Mater. Trans. A. 27A, 21052114 (1996).Google Scholar