Published online by Cambridge University Press: 13 April 2015
The onset of a diffusive phase transformation in thin film Zn0.70Mg0.29Ga0.01O deposited on c-oriented sapphire (α-Al2O3) was explored using dynamic heating experiments in a laser pulsed atom probe tomography (APT) instrument and correlated with transmission electron microscopy (TEM). Specimens were laser irradiated using 100–1000 pJ pulse energies with initial temperatures between 50 and 300 K for up to 8.64 × 1010 pulses. Using a finite element model, it was possible to estimate the temperatures reached by the specimen during laser pulsing, which were calculated to be 300 K to above 1000 K. Due to the small sample volume, quench rates were estimated to be 1013 K/s, allowing for nanosecond temporal resolution during the in situ heating experiments. The formation of Mg-spinel (MgAl2O4) at the transparent conductive oxide/α-Al2O3 substrate interface was observed using electron diffraction and confirmed by atom probe analysis. Subnanometer spatial resolution in the atom probe data reconstructions allowed for near atomic level diffusion to be observed. This work demonstrates the feasibility of conducting these experiments in situ using a combined TEM and APT instrument.