Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-26T14:14:20.929Z Has data issue: false hasContentIssue false

Kinetic and static friction between alumina nanowires and a Si substrate characterized using a bending manipulation method

Published online by Cambridge University Press:  22 May 2015

Hongtao Xie
Affiliation:
The Faculty of Engineering Architecture and Information Technology, School of Mechanical and Mining Engineering, The University of Queensland, Queensland 4072, Australia
Shiliang Wang*
Affiliation:
The Faculty of Engineering Architecture and Information Technology, School of Mechanical and Mining Engineering, The University of Queensland, Queensland 4072, Australia
Han Huang*
Affiliation:
The Faculty of Engineering Architecture and Information Technology, School of Mechanical and Mining Engineering, The University of Queensland, Queensland 4072, Australia
*
a)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

The kinetic and static friction forces between Al2O3 nanowires (NWs) and a Si substrate were simultaneously determined by the use of bending manipulation, which bent a NW into a “hook” shape, and then let it recover elastically. An analytical model was developed to estimate the kinetic friction force based on the hypothesis that part of the elastic energy stored in the bent NW was consumed by the work of the friction during recovering. The static friction force was also calculated using force equilibrium. Finite element analysis and experimental testing were performed to verify the analytical model. The kinetic and static friction forces per unit area obtained were in the ranges of 1.16–3.4 MPa and 0.68–2.7 MPa, respectively, which agree well with most of the values reported previously for NWs or nanoparticles on flat substrates. It was also found that the NW size had no apparent effect on the interfacial shear stress.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Susan B. Sinnott

References

REFERENCES

Strus, M.C., Cano, C.I., Byron Pipes, R., Nguyen, C.V., and Raman, A.: Interfacial energy between carbon nanotubes and polymers measured from nanoscale peel tests in the atomic force microscope. Compos. Sci. Technol. 69(10), 1580 (2009).CrossRefGoogle Scholar
Strus, M.C., Lahiji, R.R., Ares, P., López, V., Raman, A., and Reifenberger, R.: Strain energy and lateral friction force distributions of carbon nanotubes manipulated into shapes by atomic force microscopy. Nanotechnology 20(38), 18 (2009).CrossRefGoogle ScholarPubMed
Shim, H.W., Kuppers, J.D., and Huang, H.: Strong friction of silicon carbide nanowire films. Nanotechnology 20(2), 025704 (2009).CrossRefGoogle ScholarPubMed
Autumn, K., Liang, Y.A., Hsieh, S.T., Zesch, W., Chan, W.P., Kenny, T.W., Fearing, R., and Full, R.J.: Adhesive force of a single gecko foot-hair. Nature 405(8), 681 (2000).CrossRefGoogle ScholarPubMed
Wang, S., Chen, G., Huang, H., Ma, S., Xu, H., He, Y., and Zou, J.: Vapor-phase synthesis, growth mechanism and thickness-independent elastic modulus of single-crystal tungsten nanobelts. Nanotechnology 24(50), 505705 (2013).CrossRefGoogle ScholarPubMed
Wang, S., He, Y., Huang, H., Zou, J., Auchterlonie, G.J., Hou, L., and Huang, B.: An improved loop test for experimentally approaching the intrinsic strength of alumina nanoscale whiskers. Nanotechnology 24(28), 285703 (2013).CrossRefGoogle ScholarPubMed
Falvo, M.R., Taylor, R.M. II, Helser, A., Chi, V., Brooks, F.P. Jr., Washburn, S., and Superfine, R.: Nanometre-scale rolling and sliding of carbon nanotubes. Nature 397(6716), 236 (1999).CrossRefGoogle ScholarPubMed
Mo, Y., Turner, K.T., and Szlufarska, I.: Friction laws at the nanoscale. Nature 457(26), 1116 (2009).CrossRefGoogle ScholarPubMed
Bhushan, B., Israelachvili, J., and Landman, U.: Nanotribology: friction, wear and lubrication at the atomic scale. Nature 374(13), 607 (1995).CrossRefGoogle Scholar
Vanossi, A., Manini, N., Urbakh, M., Zapperi, S., and Tosatti, E.: Modeling friction: From nanoscale to mesoscale. Rev. Mod. Phys. 85(2), 529 (2013).CrossRefGoogle Scholar
Kim, H-J. and Kim, D-E.: Nano-scale friction: A review. Int. J. Precis. Eng. Manuf. 10(2), 141 (2009).Google Scholar
Bordag, M., Ribayrol, A., Conache, G., Fröberg, L.E., Gray, S., Samuelson, L., Montelius, L., and Pettersson, H.: Shear stress measurements on InAs nanowires by AFM manipulation. Small 3(8), 1398 (2007).CrossRefGoogle ScholarPubMed
Polyakov, B., Vlassov, S., Dorogin, L.M., Kulis, P., Kink, I., and Lohmus, R.: The effect of substrate roughness on the static friction of CuO nanowires. Surf. Sci. 606(17–18), 1393 (2012).CrossRefGoogle Scholar
Qin, Q. and Zhu, Y.: Static friction between silicon nanowires and elastomeric substrates. ACS Nano 5(9), 7404 (2011).CrossRefGoogle ScholarPubMed
Conache, G., Ribayrol, A., Fröberg, L.E., Borgström, M.T., Samuelson, L., Montelius, L., Pettersson, H., and Gray, S.M.: Bias-controlled friction of InAs nanowires on a silicon nitride layer studied by atomic force microscopy. Phys. Rev. B 82(3), 035403-1035403-5 (2010).CrossRefGoogle Scholar
DelRio, F.W., de Boer, M.P., Knapp, J.A., David Reedy, E., Clews, P.J., and Dunn, M.L.: The role of van der Waals forces in adhesion of micromachined surfaces. Nat. Mater. 4(8), 629 (2005).CrossRefGoogle Scholar
Conache, G., Gray, S., Ribayrol, A., Fröberg, L.E., Samuelson, L., Pettersson, H., and Montelius, L.: Friction measurements of InAs nanowires on silicon nitride by AFM manipulation. Small 5(2), 203 (2009).CrossRefGoogle ScholarPubMed
Conache, G., Gray, S.M., Ribayrol, A., Fröberg, L.E., Samuelson, L., Montelius, L., and Pettersson, H.: Comparative friction measurements of InAs nanowires on three substrates. J. Appl. Phys. 108(9), 094307 (2010).CrossRefGoogle Scholar
Stan, G., Krylyuk, S., Davydov, A.V., and Cook, R.F.: Bending manipulation and measurements of fracture strength of silicon and oxidized silicon nanowires by atomic force microscopy. J. Mater. Res. 27(03), 562 (2011).CrossRefGoogle Scholar
Dorogin, L.M., Polyakov, B., Petruhins, A., Vlassov, S., Lõhmus, R., Kink, I., and Romanov, A.E.: Modeling of kinetic and static friction between an elastically bent nanowire and a flat surface. J. Mater. Res. 27(03), 580 (2011).CrossRefGoogle Scholar
Dorogin, L.M., Vlassov, S., Polyakov, B., Antsov, M., Lõhmus, R., Kink, I., and Romanov, A.E.: Real-time manipulation of ZnO nanowires on a flat surface employed for tribological measurements: Experimental methods and modeling. Phys. Status Solidi B 250(2), 305 (2013).CrossRefGoogle Scholar
Hou, L., Wang, S., and Huang, H.: A simple criterion for determining the static friction force between nanowires and flat substrates using the most-bent-state method. Nanotechnology 26(16), 165702 (2015).CrossRefGoogle ScholarPubMed
Antsov, M., Dorogin, L., Vlassov, S., Polyakov, B., Vahtrus, M., Mougin, K., Lõhmus, R., and Kink, I.: Analysis of static friction and elastic forces in a nanowire bent on a flat surface: A comparative study. Tribol. Int. 72, 31 (2014).CrossRefGoogle Scholar
Polyakov, B., Dorogin, L.M., Vlassov, S., Kink, I., Lohmus, A., Romanov, A.E., and Lohmus, R.: Real-time measurements of sliding friction and elastic properties of ZnO nanowires inside a scanning electron microscope. Solid State Commun. 151(18), 1244 (2011).CrossRefGoogle Scholar
Zhu, Y., Qin, Q., Gu, Y., and Wang, Z.L.: Friction and shear strength at the nanowire–substrate interfaces. Nanoscale Res. Lett. 5(2), 291 (2009).CrossRefGoogle ScholarPubMed
Desai, A.V. and Haque, M.A.: Sliding of zinc oxide nanowires on silicon substrate. Appl. Phys. Lett. 90(3), 033102 (2007).CrossRefGoogle Scholar
Stupkiewicz, S. and Mróz, Z.: Elastic beam on a rigid frictional foundation under monotonic and cyclic loading. Int. J. Solids Struct. 31(24), 3419 (1994).CrossRefGoogle Scholar
Polyakov, B., Dorogin, L.M., Vlassov, S., Kink, I., Romanov, A.E., and Lohmus, R.: Simultaneous measurement of static and kinetic friction of ZnO nanowires in situ with a scanning electron microscope. Micron 43(11), 1140 (2012).CrossRefGoogle ScholarPubMed
Frisch-Fay, R. ed.: Flexible Bars (Butterworths, London, UK, 1962).Google Scholar
Bhushan, B. and Sundararajan, S.: Micro/nanoscale friction and wear mechanisms of thin films using atomic force and friction force microscopy. Acta Mater. 46(11), 3793 (1998).CrossRefGoogle Scholar
Lide, D.R. ed.: CRC Handbook of Chemistry and Physics, 80th ed. (CRC Press, Cleveland, OH, 1999).Google Scholar
Meyer, E., Overney, R., Brodbeck, D., Howald, L., Lüthi, R., Frommer, J., and Güntherodt, H.J.: Friction and wear of Langmuir-Blodgett films observed by friction force microscopy. Phys. Rev. Lett. 69(12), 1777 (1992).CrossRefGoogle ScholarPubMed
Dietzel, D., Mönninghoff, T., Jansen, L., Fuchs, H., Ritter, C., Schwarz, U.D., and Schirmeisen, A.: Interfacial friction obtained by lateral manipulation of nanoparticles using atomic force microscopy techniques. J. Appl. Phys. 102(8), 084306 (2007).CrossRefGoogle Scholar
Kim, H-J., Kang, K.H., and Kim, D-E.: Sliding and rolling frictional behavior of a single ZnO nanowire during manipulation with an AFM. Nanoscale 5(13), 6081 (2013).CrossRefGoogle ScholarPubMed