Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-28T17:24:47.488Z Has data issue: false hasContentIssue false

Helium ion microscopy of electrospun CNT–polymer composites

Published online by Cambridge University Press:  18 December 2014

Eva M. Campo*
Affiliation:
School of Electronic Engineering, Bangor University, Bangor LL57 1UT, UK; and Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, Texas 78249, USA
Eduardo Larios
Affiliation:
Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, Texas 78249, USA
Chuong Huynh
Affiliation:
Carl Zeiss Microscopy, LLC, Ion Microscopy Innovation Center, Peabody, Massachusetts 01960, USA
Mohan Ananth
Affiliation:
Carl Zeiss Microscopy, LLC, Ion Microscopy Innovation Center, Peabody, Massachusetts 01960, USA
*
a) Address all correspondence to this author. e-mail: [email protected], [email protected]
Get access

Abstract

Arrangement and conformational interactions of carbon nanotubes (CNTs) and matrix upon electrospinning have been examined by surface-sensitive helium ion microscopy (He-IM). The enhanced surficial information is mostly a consequence of convoluted topographic sensitivity and reduced electrostatic charging, resulting from He ion–matter interactions. In addition, we have explored the correlation of findings by He-IM imaging with secondary electron microscopy (SEM), transmission electron microscopy (TEM), and near edge x-ray absorption fine structure (NEXAFS) spectroscopy; the latter encouraged by similar sampling depth profiles in both techniques. This study provides further evidence of strong conformational relations between filler and matrix (which we have reported recently) and of the presence of a tightly bound polymeric phase interaction between the CNT and the bulk matrix. We conclude that both the absence of electrostatic charging and enhanced surface sensitivity in He-IM offer a remarkable opportunity to study electrospinning dynamics in nanocomposites.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56 (1991).CrossRefGoogle Scholar
Baughman, R.H., Cui, C.X., Zakhidov, A.A., Iqbal, Z., and Barisci, J.N.: Nanotube actuators. Science 284, 1340 (1999).CrossRefGoogle ScholarPubMed
Spitalsky, Z., Tasis, D., Papagelis, K., and Galiotis, C.: Carbon nanotube–polymer composites: Chemistry, processing, mechanical and electrical properties. Prog. Polym. Sci. 35, 357 (2010).CrossRefGoogle Scholar
Zhang, Y. and Iijima, S.: Elastic response of carbon nanotube bundles to visible light. Phys. Rev. Lett. 82, 3472 (1999).CrossRefGoogle Scholar
Qian, H., Greenhalgh, E.S., Shaffer, M.S.P., and Bismarck, A.: Carbon nanotube-based hierarchical composites: A review. J. Mater. Chem. 20, 4751 (2010).CrossRefGoogle Scholar
Ahir, S.V. and Terentjev, E.M.: Photomechanical actuation in polymer-nanotube composites. Nat. Mater. 4, 491 (2005).CrossRefGoogle ScholarPubMed
Bar-Cohen, Y.: Electroactive polymers as artificial muscles-capabilities, potentials and challenges. Handbook on Biomimetics 11, 1 (2000).Google Scholar
Xie, X-L., Mai, Y-W., and Zhou, X-P.: Dispersion and alignment of carbon nanotubes in polymer matrix: A review. Mater. Sci. Eng., R 49, 89 (2005).CrossRefGoogle Scholar
Baskaran, D., Mays, J.W., and Bratcher, M.S.: Noncovalent and nonspecific molecular interactions of polymers with multiwalled carbon nanotubes. Chem. Mater. 17, 3389 (2005).CrossRefGoogle Scholar
MacDiarmid, A.G., Jones, W.E. Jr., Norris, I.D., Gao, J., Johnson, A.T. Jr., Pinto, N.J., Hone, J., Han, B., Ko, F.K., Okuzaki, H., and Llaguno, M.: Electrostatically-generated nanofibers of electronic polymers. Synth. Met. 119, 27 (2001).CrossRefGoogle Scholar
Yeo, L.Y. and Friend, J.R.: Electrospinning carbon nanotube polymer composite nanofibers. J. Exp. Nanosci. 1, 177 (2006).CrossRefGoogle Scholar
Winter, A.D., Alamgir, F.M., Jaye, C., Fischer, D., and Campo, E.M.: Near-edge x-ray absorption fine structure studies of electrospun poly(dimethylsiloxane)/poly (methylmethacrylate)/multiwall carbon nanotube composites. Langmuir 29, 15882 (2013).CrossRefGoogle Scholar
Schadler, L.S., Giannaris, S.C., and Ajayan, P.M.: Load transfer in carbon nanotube epoxy composites. Appl. Phys. Lett. 73, 3842 (1998).CrossRefGoogle Scholar
Kovacs, J.Z., Andresen, K., Pauls, J.R., Garcia, C.P., Schossig, M., Schulte, K., and Bauhofer, W.: Analyzing the quality of carbon nanotube dispersions in polymers using scanning electron microscopy. Carbon 45, 1279 (2007).CrossRefGoogle Scholar
Ananth, M., Scipioni, L., and Notte, J.: The helium ion microscope: The next stage in nanoscale imaging. Am. Lab. 40, 4246 (2008).Google Scholar
Bell, D.C., Lemme, M.C., Stern, L.A., Williams, J.R., and Marcus, C.M.: Precision cutting and patterning of graphene with helium ions. Nanotechnology 20, 455301 (2009).CrossRefGoogle ScholarPubMed
Bazou, D., Behan, G., Reid, C., Boland, J.J., and Zhang, H.Z.: Imaging of human colon cancer cells using He-Ion scanning microscopy. J. Microsc. 242, 290 (2011).CrossRefGoogle ScholarPubMed
Rudneva, M., van Veldhoven, E., Malladi, S.K., Maas, D., and Zandbergen, H.W.: Novel nanosample preparation with a helium ion microscope. J. Mater. Res. 28, 1013 (2013).CrossRefGoogle Scholar
Joy, D.C.: Helium Ion Microscopy Principles and Applications (Springer, New York, NY, 2013).CrossRefGoogle Scholar
Inai, K., Ohya, K., and Ishitani, T.: Simulation study on image contrast and spatial resolution in helium ion microscope. J. Electron Microsc. 56, 163 (2007).CrossRefGoogle Scholar
Ramachandra, R., Griffin, B., and Joy, D.: A model of secondary electron imaging in the helium ion scanning microscope. Ultramicroscopy 109, 748 (2009).CrossRefGoogle Scholar
Yang, D., Liu, X., Jin, Y., Zhu, Y., Zeng, D., Jiang, X., and Ma, H.: Electrospinning of poly (dimethylsiloxane)/poly(methyl methacrylate) nanofibrous membrane: Fabrication and application in protein microarrays. Biomacromolecules 10, 3335 (2009).CrossRefGoogle Scholar
Joens, M.S., Huynh, C., Kasuboski, J.M., Ferranti, D., Sigal, Y.J., Zeitvogel, F., Obst, M., Burkhardt, C.J., Curran, K.P., Chalasani, S.H., Stern, L.A., Goetze, B., and Fitzpatrick, J.A.J.: Helium ion microscopy (HIM) for the imaging of biological samples at sub-nanometer resolution. Sci. Rep. 3, 17 (2013).CrossRefGoogle ScholarPubMed
Stöhr, J.: NEXAFS Spectroscopy (Springer, Berlin, Germany, 2003).Google Scholar
Sohn, K.E., Dimitriou, M.D., Genzer, J., Fischer, D.A., Hawker, C.J., and Kramer, E.J.: Determination of the electron escape depth for NEXAFS spectroscopy. Langmuir 25, 6341 (2009).CrossRefGoogle ScholarPubMed
Panzavolta, S., Bracci, B., Gualandi, C., Focarete, M.L., Treossi, E., Kouroupis-Agalou, K., Rubini, K., Bosia, F., Brely, L., Pugno, N.M., Palermo, V., and Bigi, A.: Structural reinforcement and failure analysis in composite nanofibers of graphene oxide and gelatin. Carbon 78, 566 (2014).CrossRefGoogle Scholar
Carpinteri, A. and Pugno, N.: Are scaling laws on strength of solids related to mechanics or to geometry? Nat. Mater. 4, 421 (2005).CrossRefGoogle ScholarPubMed
Giesa, T., Pugno, N.M., Wong, J.W., Kaplan, D.L., and Buehler, M.J.: What's inside the box? – Length-scales that govern fracture processes of polymer fibers. Adv. Mater. 26, 412 (2014).CrossRefGoogle ScholarPubMed
Göldel, A., Kasaliwal, G., and Pötschke, P.: Selective localization and migration of multiwalled carbon nanotubes in blends of polycarbonate and poly(styrene-acrylonitrile). Macromol. Rapid Commun. 30, 423 (2009).CrossRefGoogle ScholarPubMed
Brandrup, J., Immergut, E.H., Grulke, E.A., Abe, A., and Bloch, D.R.: Polymer Handbook (Wiley, New York, 1989).Google Scholar
Wu, S.: Calculation of interfacial tension in polymer systems. J. Polym. Sci., Part C: Polym. Symp. 34, 19 (1971).CrossRefGoogle Scholar
Nuriel, S., Liu, L., Barber, A.H., and Wagner, H.D.: Direct measurement of multiwall nanotube surface tension. Chem. Phys. Lett. 404, 263 (2005).CrossRefGoogle Scholar
Tanaka, N., Yamasaki, J., Kawai, T., and Pan, H.: The first observation of carbon nanotubes by spherical aberration corrected high-resolution transmission electron microscopy. Nanotechnology 15, 1779 (2004).CrossRefGoogle ScholarPubMed
Tambe, N.S. and Bhushan, B.: Micro/nanotribological characterization of PDMS and PMMA used for BioMEMS/NEMS applications. Ultramicroscopy 105, 238 (2005).CrossRefGoogle Scholar
Pai, C-L., Boyce, M.C., and Rutledge, J.C.: Morphology of porous and wrinkled fibers of polystyrene electrospun from dimethylformamide. Macromolecules 42, 2102 (2009).CrossRefGoogle Scholar
Kim, G.M., Michler, G.H., and Pötschke, P.: Deformation processes of ultrahigh porous multiwalled carbon nanotubes/polycarbonate composite fibers prepared by electrospinning. Polymer 46, 7346 (2005).CrossRefGoogle Scholar
Liu, Y., Chen, S., Zussman, E., Korach, C.S., Zhao, W., and Rafailovich, M.: Diameter-dependent modulus and melting behavior in electrospun semicrystalline polymer fibers. Macromolecules 44, 4439 (2011).CrossRefGoogle Scholar
Yu, J., Tonpheng, B., Gröbner, G., and Andersson, O.: A MWCNT/polyisoprene composite reinforced by an effective load transfer reflected in the extent of polymer coating. Macromolecules 45, 2841 (2012).CrossRefGoogle Scholar
Wong, M., Paramsothy, M., Xu, X.J., Ren, Y., Li, S., and Liao, K.: Physical interactions at carbon nanotube-polymer interface. Polymer 44, 7757 (2003).CrossRefGoogle Scholar
Beigbeder, A., Linares, M., Devalckenaere, M., Degée, P., Claes, M., Beljonne, D., Lazzaroni, R., and Dubois, P.: CH-π interactions as the driving force for silicone-based nanocomposites with exceptional properties. Adv. Mater. 20, 1003 (2008).Google Scholar
Zhang, Y.Y., Wang, C.M., and Tan, V.B.C.: Buckling of carbon nanotubes at high temperatures. Nanotechnology 20, 215702 (2009).CrossRefGoogle ScholarPubMed
Nam, C-Y., Jaroenapibal, P., Tham, D., Luzzi, D.E., Evoy, S., and Fischer, J.E.: Diameter-dependent electromechanical properties of GaN nanowires. Nano Lett. 6, 153 (2006).CrossRefGoogle ScholarPubMed