Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-27T20:13:20.786Z Has data issue: false hasContentIssue false

Solvent processed conductive polymer with single-walled carbon nanotube composites

Published online by Cambridge University Press:  30 October 2015

Zhe Jia
Affiliation:
Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
Hui Zhao
Affiliation:
Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
Ying Bai
Affiliation:
Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA; and School of Chemical Engineering & Environment, Beijing Institute of Technology, Beijing 100081, China
Ting Zhang
Affiliation:
School of Optoelectronics, Beijing Institute of Technology, Beijing 100081, China
Amanda S. Lupinacci
Affiliation:
Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California 94720, USA; and National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
Andrew M. Minor
Affiliation:
Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California 94720, USA; and National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
Gao Liu*
Affiliation:
Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Single-walled carbon nanotube (SWNT) and conductive polymer composite were studied as a potential electrode candidate for plastic electronic devices such as organic light-emitting diodes (OLEDs) and solar cells. A novel conductive polymer, poly(2,7–9,9(di(oxy-2,5,8-trioxadecane))fluorene) (PFO), was synthesized and characterized as a surfactant to disperse SWNTs in solutions. The ethylene oxide (EO) side chain of rigid PFO backbone acts as a template to wrap around SWNTs in solution. Up to 0.02% (by weight) of SWNTs are stabilized and well separated in the solution phase. The carbon nanotube can be dispersed in solutions for over 4 mo. Transmission electron microscopy (TEM) images of solvent cast film suggest highly uniformed SWNT distribution incorporated in the conductive polymer matrix. Transmittance characterization shows the film is as transparent as indium tin oxide conducting glass. Conductivity measurement shows SWNTs can effectively inject charges into the PFO polymer matrix at low voltage. The current versus voltage profile of the SWNT/PFO composite film (2% SWNT in PFO by weight) shows that the majority current conducting is carried by SWNTs.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Chen, J., Perebeinos, V., Freitag, M., Tsang, J., Fu, Q., Liu, J., and Avouris, P.: Bright infrared emission from electrically induced excitons in carbon nanotubes. Science 310(5751), 1171 (2005).CrossRefGoogle ScholarPubMed
Fennimore, A.M., Yuzvinsky, T.D., Han, W.Q., Fuhrer, M.S., Cumings, J., and Zettl, A.: Rotational actuators based on carbon nanotubes. Nature 424(6947), 408 (2003).Google Scholar
Collins, P.G. and Avouris, P.: Nanotubes for electronics. Sci.Am. 283(6), 62 (2000).CrossRefGoogle ScholarPubMed
Ren, Z.F., Huang, Z.P., Xu, J.W., Wang, J.H., Bush, P., Siegal, M.P., and Provencio, P.N.: Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science 282(5391), 1105 (1998).Google Scholar
Behabtu, N., Young, C.C., Tsentalovich, D.E., Kleinerman, O., Wang, X., Ma, A.W.K., Bengio, E.A., ter Waarbeek, R.F., de Jong, J.J., Hoogerwerf, R.E., Fairchild, S.B., Ferguson, J.B., Maruyama, B., Kono, J., Talmon, Y., Cohen, Y., Otto, M.J., and Pasquali, M.: Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity. Science 339(6116), 182 (2013).Google Scholar
Jiang, C., Saha, A., Young, C.C., Hashim, D.P., Ramirez, C.E., Ajayan, P.M., Pasquali, M., and Martí, A.A.: Macroscopic nanotube fibers spun from single-walled carbon nanotube polyelectrolytes. ACS Nano 8(9), 9107 (2014).CrossRefGoogle ScholarPubMed
Saha, A., Jiang, C., and Martí, A.A.: Carbon nanotube networks on different platforms. Carbon 79, 1 (2014).Google Scholar
O'Connell, M.J., Boul, P., Ericson, L.M., Huffman, C., Wang, Y.H., Haroz, E., Kuper, C., Tour, J., Ausman, K.D., and Smalley, R.E.: Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping. Chem. Phys. Lett. 342(3–4), 265 (2001).CrossRefGoogle Scholar
Xia, H.S., Wang, Q., and Qiu, G.H.: Polymer-encapsulated carbon nanotubes prepared through ultrasonically initiated in situ emulsion polymerization. Chem. Mater. 15(20), 3879 (2003).Google Scholar
Richard, C., Balavoine, F., Schultz, P., Ebbesen, T.W., and Mioskowski, C.: Supramolecular self-assembly of lipid derivatives on carbon nanotubes. Science 300(5620), 775 (2003).Google Scholar
Tang, C.W. and VanSlyke, S.A.: Organic electroluminescent diodes. Appl. Phys. Lett. 51(12), 913 (1987).CrossRefGoogle Scholar
Burroughes, J.H., Bradley, D.D.C., Brown, A.R., Marks, R.N., Mackay, K., Friend, R.H., Burns, P.L., and Holmes, A.B.: Light-emitting diodes based on conjugated polymers. Nature 347, 539 (1990).CrossRefGoogle Scholar
Braun, D. and Heeger, A.J.: Visible light emission from semiconducting polymer diodes. Appl. Phys. Lett. 58(18), 1982 (1991).Google Scholar
Hebner, T.R., Wu, C.C., Marcy, D., Lu, M.H., and Sturm, J.C.: Ink-jet printing of doped polymers for organic light emitting devices. Appl. Phys. Lett. 72(5), 519 (1998).Google Scholar
Pardo, D.A., Jabbour, G.E., and Peyghambarian, N.: Application of screen printing in the fabrication of organic light-emitting devices. Adv. Mater. 12(17), 1249 (2000).3.0.CO;2-Y>CrossRefGoogle Scholar
Fournet, P., O'Brien, D.F., Coleman, J.N., Horhold, H.H., and Blau, W.J.: A carbon nanotube composite as an electron transport layer for M3EH-PPV based light-emitting diodes. Synth. Met. 121(13 Special Issue), 1683 (2001).Google Scholar
Woo, H.S., Czerw, R., Webster, S., Carroll, D.L., Ballato, J., Strevens, A.E., O'Brien, D., and Blau, W.J.: Hole blocking in carbon nanotube-polymer composite organic light-emitting diodes based on poly (m-phenylene vinylene-co-2,5-dioctoxy-p-phenylene vinylene). Appl. Phys. Lett. 77(9), 1393 (2000).Google Scholar
Dalton, A.B., Blau, W.J., Chambers, G., Coleman, J.N., Henderson, K., Lefrant, S., McCarthy, B., Stephan, C., and Byrne, H.J.: A functional conjugated polymer to process, purify and selectively interact with single wall carbon nanotubes. Synth. Met. 121(13 Special Issue), 1217 (2001).Google Scholar
Mc Carthy, B., Coleman, J.N., Czerw, R., Dalton, A.B., Carroll, D.L., and Blau, W.J.: Microscopy studies of nanotube-conjugated polymer interactions. Synth. Met. 121(13 Special Issue), 1225 (2001).CrossRefGoogle Scholar
Fournet, P., Coleman, J.N., Lahr, B., Drury, A., Blau, W.J., O'Brien, D.F., and Horhold, H.H.: Enhanced brightness in organic light-emitting diodes using a carbon nanotube composite as an electron-transport layer. J. Appl. Phys. 90(2), 969 (2001).Google Scholar
Jia, Z., Yuan, W., Zhao, H., Hu, H., and Baker, G.L.: Composite electrolytes comprised of poly(ethylene oxide) and silica nanoparticles with grafted poly(ethylene oxide)-containing polymers. RSC Adv. 4(77), 41087 (2014).Google Scholar
Jia, Z., Yuan, W., Sheng, C., Zhao, H., Hu, H., and Baker, G.L.: Optimizing the electrochemical performance of imidazolium-based polymeric ionic liquids by varying tethering groups. J. Polym. Sci., Part A: Polym. Chem. 53(11), 1339 (2015).Google Scholar
Hu, H., Yuan, W., Lu, L., Zhao, H., Jia, Z., and Baker, G.L.: Low glass transition temperature polymer electrolyte prepared from ionic liquid grafted polyethylene oxide. J. Polym. Sci., Part A: Polym. Chem. 52(15), 2104 (2014).Google Scholar
Hu, H., Yuan, W., Jia, Z., and Baker, G.L.: Ionic liquid-based random copolymers: A new type of polymer electrolyte with low glass transition temperature. RSC Adv. 5(5), 3135 (2015).CrossRefGoogle Scholar
Deng, Y., Yuan, W., Jia, Z., and Liu, G.: H- and J-aggregation of fluorene-based chromophores. J. Phys. Chem. B 118(49), 14536 (2014).Google Scholar
Jullien, L., Canceill, J., Lacombe, L., and Lehn, J.M.: Analysis of the conformational behavior of perfunctionalized beta-cyclodextrins .1. Evidence for insertion of one of the rim substituents into the cyclodextrin cavity in organic-solvents. J. Chem. Soc., Perkin Trans. 2(5), 989 (1994).Google Scholar
Pei, , Qibing, , and Yang, , Yang, : Efficient photoluminescence and electroluminescence from a soluble polyfluorene. J. Am. Chem. Soc. 118(31), 7416 (1996).Google Scholar
Stephan, O. and Vial, J.C.: Blue light electroluminescent devices based on a copolymer derived from fluorene and carbazole. Synth. Met. 106(2), 115 (1999).Google Scholar
Nguyen, T.Q., Doan, V., and Schwartz, B.J.: Conjugated polymer aggregates in solution: Control of interchain interactions. J. Chem. Phys. 110(8), 4068 (1999).CrossRefGoogle Scholar