Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-26T02:35:48.776Z Has data issue: false hasContentIssue false

Photoelectron spectroscopy study of amorphous silicon-carbon alloys deposited by plasma-enhanced chemical vapor deposition

Published online by Cambridge University Press:  31 January 2011

G. Cicala
Affiliation:
Centro di Studio per la Chimica dei Plasmi CNR, Dipartimento di Chimica Università di Bari, Via Orabona, 4-70126 Bari, Italy
G. Bruno
Affiliation:
Centro di Studio per la Chimica dei Plasmi CNR, Dipartimento di Chimica Università di Bari, Via Orabona, 4-70126 Bari, Italy
P. Capezzuto
Affiliation:
Centro di Studio per la Chimica dei Plasmi CNR, Dipartimento di Chimica Università di Bari, Via Orabona, 4-70126 Bari, Italy
P. Favia
Affiliation:
Centro di Studio per la Chimica dei Plasmi CNR, Dipartimento di Chimica Università di Bari, Via Orabona, 4-70126 Bari, Italy
Get access

Abstract

X-ray photoelectron spectroscopy (XPS) coupled with Fourier transform infrared (FTIR) and optical transmission spectroscopy (OTS) has been used for the characterization of silicon-carbon alloys (a-Si1−xCx: H, F) deposited via plasma, by varying the CH4 amount in SiF4–CH4–H2 feeding mixture. XPS measurements have shown that carbon-rich a-Si1−xCx: H, F alloys include large amounts of fluorine (>11 at. %), which make the films susceptible to the air oxidation. In addition, the effect of the alloying partner carbon on the valence band (VB) and on the VB edge position of amorphous silicon is also described.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Hamakawa, Y., Ma, W., and Okamoto, H., in Plasma Deposition of Amorphous Silicon Based Material, edited by Bruno, G., Capezzuto, P., and Madan, A. (Academic, San Diego, CA, 1995), Chap. VI.Google Scholar
2.Anderson, D. A. and Spear, W. E., Philos. Mag. 35, 1 (1977).CrossRefGoogle Scholar
3.Li, Y-M., in Amorphous Silicon Technology–1993, edited by Schiff, E. A., Thompson, M.J., Madan, A., Tanaka, K., and LeComber, P.G. (Mater. Res. Soc. Symp. Proc. 297, Pittsburgh, PA, 1993), p. 803.Google Scholar
4.Mahan, A. H., Williamson, D. L., Ruth, M., and Raboisson, P., J. Non-Cryst. Solids. 77/78, 849 (1985).Google Scholar
5.Morimoto, A., Miura, T., Kumeda, H., and Shimizu, T., Jpn. J. Appl. Phys. 22, 908 (1983).Google Scholar
6.Ohler, C., Moers, J., Förster, A., and Lüth, H., J. Vac. Sci. Technol. B 13, 1728 (1995).Google Scholar
7.Katayama, Y. K., Shimada, T., Uda, T., and Kobayashi, L. I., J. Non-Cryst. Solids. 59/60, 1561 (1983).Google Scholar
8.Delhalle, J., Andre, J. M., Delhalle, S., Pireaux, J. J., Caudano, R., and Verbist, J. J., J. Chem. Phys. 60, 595 (1974).CrossRefGoogle Scholar
9.Lee, W-Y., J. Appl. Phys. 51, 3365 (1980).Google Scholar
10.Hayes, T. M., Allen, J.W., Beeby, J.L., and Oh, S-J., Solid State Commun. 56, 953 (1985).Google Scholar
11.Suzuki, Y., Meikle, S., Fukuda, Y., and Hatanaka, Y., Jpn. J. Appl. Phys. 29, 2663 (1990).Google Scholar
12.Cicala, G., Bruno, G., and Capezzuto, P., Pure Appl. Chem. 68, 1143 (1996).Google Scholar
13.Cicala, G., Schiavulli, L., Amato, G., Capezzuto, P., and Bruno, G., J. Appl. Phys. 79, 8856 (1996).Google Scholar
14.Hughes, A. E. and Sexton, B. A., J. Elect. Spect. Relat. Phenom. 50, c15 (1990).Google Scholar
15.Moulder, J. F., Stickle, W. F., Sobol, P. E., and Bomben, K. D., Handbook of X-ray Photoelectron Spectroscopy, edited by Chastain, J. (Perkin-Elmer Corporation, Eden Prairie, MN, 1992).Google Scholar
16.Chuang, T. J., Winters, H. F., and Coburn, J.W., Appl. Surf. Sci. 21, 514 (1978).Google Scholar
17.Cardinaud, C. and Turban, G., Appl. Surf. Sci. 45, 109 (1990).CrossRefGoogle Scholar
18.Cicala, G., Bruno, G., and Capezzuto, P., XIIIth Europhysics Sectional Conference on Atomic and Molecular Physics of Ionized Gases ESCAMPIG, Poprad, Slovakia, August, 1996, p. 417.Google Scholar
19.Beamson, G. and Briggs, D., High Resolution of Organic Polymers The Scientia ESCA 300 Database (John Wiley / Sons, New York, 1992).Google Scholar
20.Ley, L., Kowalczyk, S., Pollak, R., and Shirley, D. A., Phys. Rev. Lett. 29, 1088 (1972).Google Scholar
21.Adler, D., J. Chem. Ed. 57, 560 (1980).CrossRefGoogle Scholar
22.Miller, J. M., Lindau, I., and Spicer, W. E., Philos. Mag. B 43, 273 (1981).CrossRefGoogle Scholar
23.Favia, P., Fracassi, F., and d'Agostino, R., J. Biomater. Sci. Polymer Ed. 4, 61 (1992).CrossRefGoogle Scholar
24.Wieder, H., Cardona, M., and Guarnieri, C. R., Phys. Status Solidi B 92, 99 (1979).Google Scholar
25.Lucovski, G., Solid State Commun. 29, 571 (1979).CrossRefGoogle Scholar
26.Dutta, R., Banerjee, P. K., and Mitra, S. S., Phys. Rev. B 27, 5032 (1983).Google Scholar
27.Madan, A., Ovshinsky, S. R., and Benn, E., Philos. Mag. 40, 259 (1979).CrossRefGoogle Scholar
28.Lucovsky, G., Yang, J., Chao, S. S., Tyler, J. E., and Czubatyi, W., Phys. Rev. B 28, 3225 (1983).Google Scholar
29.Favia, P., Boland, T., Perez-Luna, V. H., Castner, D. G., and Ratner, B. D., Plasmas and Polymers (in press).Google Scholar