A study is made of the propagation of acoustic waves in a semi-infinite expanse of radiating gas on one side of an infinite, plane, radiating wall. A solution is found, in particular, for the case of sinusoidal oscillations in both position and temperature of the wall. The solution is based on a single linear integro-differential equation that plays the same role here as does the classical wave equation in equilibrium acoustic theory. The solution is applicable throughout the range from a completely transparent to a completely opaque gas and from very low to very high temperatures. The solution appears, in general, as the sum of two types of travelling waves: (1) an essentially classical sound-wave, but with a slightly altered speed and a small amount of damping and (2) a radiation-induced wave whose speed and damping may be either large or small, depending on the temperature and absorptivity of the gas. Since the waves are coupled, both types will usually be present together, even in the special cases of pure motion or pure temperature variation of the wall.