Published online by Cambridge University Press: 07 June 2019
A novel approach to identify internal interfacial layers, or IILs, in wall-bounded turbulent flows is proposed. Using a fuzzy cluster method (FCM) on the streamwise velocity component, a unique and unambiguous grouping of the uniform momentum zones (UMZs) is achieved, thus allowing the identification of the IILs. The approach overcomes some of the key limitations of the histogram-based IIL identification methods. The method is insensitive to the streamwise domain length, can be used on inhomogeneous grids, uses all the available flow field data, is trivially extended to three dimensions and does not need user-defined parameters (e.g. number of bins) other than the number of zones. The number of zones for a given snapshot can be automatically determined by an a priori algorithm based on a kernel density estimation algorithm, or KDE. This automated approach is applied to compute the average number of UMZs as a function of Reynolds number $Re_{\unicode[STIX]{x1D70F}}$ in turbulent channel flows in several numerical simulations. This systematic approach reveals a dependence of the Reynolds number on the average number of UMZs in the channel flow; this supports previously reported observations in the boundary layer. The fuzzy clustering approach is applied to the turbulent boundary layer (experimental, planar particle image velocimetry) and channel flow (numerical, direct numerical simulation) at varying Reynolds numbers. The interfacial layers are characterized by a strong concentration of spanwise vorticity, with the outer-most layer located at the upper edge of the log layer. The three-dimensional interface identification reveals a streak-like organization. The large-scale motion (LSM) at the outer region of the channel flow boundary layer modulates the outer IIL. The corrugations of the outer IIL are aligned with the LSM and the conditional correlation of the inner and outer IIL height shows that extreme near-wall events leave their mark on the outer IIL corrugations.