We present some non-stationary infinite-server queueing systems with stationary Poisson departure processes. In Foley (1982), it was shown that the departure process from the Mt/Gt/∞ queue was a Poisson process, possibly non-stationary. The Mt/Gt/∞ queue is an infinite-server queue with a stationary or non-stationary Poisson arrival process and a general server in which the service time of a customer may depend upon the customer's arrival time. Mirasol (1963) pointed out that the departure process from the M/G/∞ queue is a stationary Poisson process. The question arose whether there are any other Mt/Gt/∞ queueing systems with stationary Poisson departure processes. For example, if the arrival rate is periodic, is it possible to select the service-time distribution functions to fluctuate in order to compensate for the fluctuations of the arrival rate? In this situation and in more general situations, it is possible to select the server such that the system yields a stationary Poisson departure process.