Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-14T23:19:46.918Z Has data issue: false hasContentIssue false

On the limiting distribution of a supercritical branching process in a random environment

Published online by Cambridge University Press:  14 July 2016

Ben Hambly*
Affiliation:
University of California, San Diego

Abstract

We consider an increasing supercritical branching process in a random environment and obtain bounds on the Laplace transform and distribution function of the limiting random variable. There are two possibilities that can be distinguished depending on the nature of the component distributions of the environment. If the minimum family size of each is 1, the growth will be as a power depending on a parameter α. If the minimum family sizes of some are greater than 1, it will be exponential, depending on a parameter γ. We obtain bounds on the distribution function analogous to those found for the simple Galton-Watson case. It is not possible to obtain exact estimates and we are only able to obtain bounds to within ε of the parameters.

Type
Research Papers
Copyright
Copyright © Applied Probability Trust 1992 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Athreya, K. D. and Karlin, S. (1971) On branching processes in random environments. I. Ann. Math. Statist. 42, 14991520.CrossRefGoogle Scholar
[2] Athreya, K. B. and Karlin, S. (1971) On branching processes in random environments. II. Ann. Math. Statist. 42, 18431858.CrossRefGoogle Scholar
[3] Athreya, K. B. and Ney, P. E. (1972) Branching Processes. Springer-Verlag, Berlin.CrossRefGoogle Scholar
[4] Barlow, M. T. and Bass, R. F. (1989) The construction of Brownian motion on the Sierpinski carpet. Ann. Inst. H. Poincaré 25, 225257.Google Scholar
[5] Barlow, M. T. and Perkins, E. A. (1988) Brownian motion on the Sierpinski gasket. Prob. Theory Rel. Fields 79, 543624.Google Scholar
[6] Bingham, N. H. (1988) On the limit of a supercritical branching process. J. Appl. Prob. 25A, 215228.CrossRefGoogle Scholar
[7] Bingham, N. H., Goldie, C. M. and Teugels, J. L. (1987) Regular Variation. Cambridge University Press.Google Scholar
[8] Dubuc, S. (1971) La densité de la loi-limite d'un processus en cascade expansif. Z. Wahrscheinlichkeitsth. 19, 281290.Google Scholar
[9] Dubuc, S. (1971) Problèmes relatifs à l'itération des fonctions suggerés par les processus en cascade. Ann. Inst. Fourier 21, 171251.Google Scholar
[10] Durrett, R. (1988) Lecture notes on Particle Systems and Percolation. Wadsworth, Belmont, CA.Google Scholar
[11] Goettge, R. T. (1976) Limit theorems for the supercritical Galton-Watson process in varying environments. Math. Biosci. 28, 171190.CrossRefGoogle Scholar
[12] Harris, T. E. (1948) Branching processes. Ann. Math. Statist. 19, 474494.Google Scholar
[13] Jagers, P. (1974) Galton-Watson processes in varying environments. J. Appl. Prob. 11, 174178.CrossRefGoogle Scholar
[14] Tanny, D. (1977) Limit theorems for branching processes in random environments. Ann. Prob. 5, 100116.CrossRefGoogle Scholar
[15] Tanny, D. (1988) A necessary and sufficient condition for a branching process to grow like the product of its means. Stoch. Proc. Appl. 28, 123139.CrossRefGoogle Scholar