The solar wind interaction with comets is characterized by the mass-loading of the solar wind with heavy cometary ions that are produced by the ionization of neutrals in the extensive cometary coma. This mass-loading slows down the solar wind and ultimately leads to the formation of a magnetic barrier and a magnetotail. Solar wind protons disappear in the vicinity of the cometopause due to charge-exchange collisions with neutrals. The plasma and fields inside the cometopause of comets Halley and Giacobini-Zinner were observed by instruments on board several spacecraft. Several plasma populations were detected in the inner coma, including cold (less than 1 eV) and energetic (several keV or more) ions, and cold and hot electrons. The Giotto magnetometer observed a diamagnetic cavity surrounding the nucleus, which is a consequence of an outward ion-neutral drag associated with the flow of cometary neutrals past plasma frozen onto field lines in the magnetic barrier. In addition to large-scale structures, many small-scale structures in the plasma and fields have been observed in comets, including tail rays and kinks, and plasma pile-ups and depletions in the barrier. Theoretically, the existence of a very narrow layer of enhanced plasma density just inside the diamagnetic cavity boundary has been predicted. The behavior of plasma in the inner coma (within the cometopause) of an active comet is determined both by plasma processes, such as magnetohydrodynamics, and by collisional processes such as ion-neutral friction, resistivity, electron and ion thermal cooling, ion-neutral chemical reactions, and electron-ion recombination.