No CrossRef data available.
Published online by Cambridge University Press: 12 April 2016
The theory of the motion of the Galilean satellites of Jupiter is developed up to the second-order terms. The disturbing forces are those due to mutual attractions, to the non-symmetrical internal mass distribution of Jupiter and to the attraction from the Sun. The mean equator of Jupiter is taken as the reference plane and its motion is considered. The integration of the equations is performed. The geometric equations are solved for the case in which the amplitude of libration is zero. The perturbation method is shortly commented on the grounds of some recent advances in non-linear mechanics.
In a previous paper (Ferraz-Mello, 1974) one perturbation theory has been constructed with special regard to the problem of the motion of the Galilean satellites of Jupiter. In this problem, the motions are nearly circular and coplanar; on the other hand the quasi-resonances lead to strong perturbations. The main characteristic of the theory is that it allows the main frequencies to be kept fixed from the earlier stages, and so, to have a purely trigonometric solution.