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ABSTRACT. The theory of the motion of the Galilean satellites of Jupiter 
is developed up to the second-order terms. The disturbing forces are 
those due to mutual attractions, to the non-symmetrical internal mass 
distribution of Jupiter and to the attraction from the Sun. The mean 
equator of Jupiter is taken as the reference plane and its motion is 
considered. The integration of the equations is performed. The geometric 
equations are solved for the case in which the amplitude of libration is 
zero. The perturbation method is shortly commented on the grounds of 
some recent advances in non-linear mechanics. 

In a previous paper (Ferraz-Mello, 1974) one perturbation theory 
has been constructed with special regard to the problem of the motion 
of the Galilean satellites of Jupiter. In this problem, the motions are 
nearly circular and coplanar; on the other hand the quasi-resonances 
lead to strong perturbations. The main characteristic of the theory is 
that it allows the main frequencies to be kept fixed from the earlier 
stages, and so, to have a purely trigonometric solution. 

1. THE EQUATIONS 

The equations were derived for a second-order theory; the small 
parameters are the satellite masses, the eccentricities and the inclina-~ 
tions. For each satellite the variables are the radius vector, the 
longitude, and two pairs of variables P,Q, and K,H, built respectively 
from Laplace's and the area's first integrals. These variables are close 
to Poincare's variables in exponential form: e.exp-i(1-Dtf) and I.exp-i(l-fi) 
and their complex conjugates. 

The equations for the variables Pj and Qj are separated; they are 
integro-differentlal linear equations; 

A -K2 
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+ ^ h i + i ^ ^ - Q j ) +^JD"
1(PJ+QJ) -|KV

2(P.- Q J ) ; 

, _ 2 
i Ki 1 - 1 3 2 -? 

DQ. - K.Q. = — ^ [-1+ - K.D (P.+Q.) - T K D (P.-Q.) + 
: : : Kj : : : j j 3 

+ K.D_1(P.-Q.)]- — x. - \ - D-1
 X.[7Q.-5P.+7K.D

-1(P.-Q.) 

~ 4Z" Xj[l+ J KJD'^PJ-QJ) - ̂ jD
_1(P.+Qj)+ I KjD^tPj-Qj)]. 

In these equations we have 

n . 
K. = -1 
3 V3 

an d k2 mQ (l+m.) 
A , — ~ • 

: 2 3 
V 3 a j 

where the mean motion V3 is that of the third satellite with respect to 
a rotating frame in which the mean motions of the three inner satellites 
are exactly commensurable; the mean motion n_= is that of the jth. satel-̂  
lite with respect to a Galilean (inertial axes) frame and aj is the mean 
distance of the jth satellite to the planet. D is the same differential 
operator as in Hill's moon theory 

D = t. — (£ = exp iv3t) . 

The equations for Kj and Hj are also separated; they are linear: 

(DK. + K.K.J = L-r3 + ̂ - (K. + H .J^. 

(DH. -K.H.) = - L - r . --L_(K. +H.ly-.. 

Still we have the geometric equations 

D e. = T K-i^^QJ- - \ K . (P .+Q . I T . + x K . (K.+H .} (K .-H .) 3 2 J D : 4 3 : *j 3 4 3 3 3 3 3 

2 1 3 (3 191 
DF. = - 3<j£. + 2K.S. +7K.(Pj+Q.J -^.(P.+Q.).. -

-IK.(P.-Q.). F. + i K j I ( K ._H.J
2-I ( K j + H j )

2] 
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The variables r. and ej are closely related to the perturbations 
in longitude and vector radius as defined in Ferraz-Mello (1974). The 
cylindrical coordinates of each satellite in one Galilean frame of 
reference are easily obtained from the solutions of the above set of 
equations through 

P . = a. (1 + e.) 
: : : 

•j - *0j + V + 1 iTj 

zj = -iaJ
(Kj+H:) " i V V W -TYj'^j' + 

+ | a j ( K . + H j ) ( P . = Q j ) . 

All these equations except those for Kj,Hj and Zj are exact. The 
equations for the space variables are approximated up to the second-
order terms. 

The disturbing forces enter the equations for P-: ,Qj ,Kj ,Hj through 
9b,\, 0 and x- T he main disturbing forces acting on the satellites arise 
from their mutual attractions, form the non-symmetrical distribution of 
the masses inside the planet and from the Sun. 

We could also consider the forces arising from other planets as 
well as those which give account of the corrections to Newton's equations 
due to the general relativity. The effects of the disturbing forces 
arising for other planets are not sensible in reason of their differ­
ential action; other planets may be only considered through their per­
turbations on the orbit of Jupiter, which leads to modulations of the 
solar action. The only noticeable relativistic effects are the advance 
of the perijoves (Ferraz-Mello, 1966); these effects do not need to be 
considered now and will be introduced in a later paper. 

2. THE MUTUAL ATTRACTIONS 

The disturbing actions due to the mutual attractions are given by 

2 
k m . (1+U.) - a. . (1+U.)5. . a..(l+u.)?.. 

&= z &.. = z -{ J- ^ i_i2 + _L2 * i3} 
3 ,• -4A 3i . / . 2 3 3 1r: i^j v_ r. . r. 

3 13 1 

k2m. (1+S.) - a. .(I+S.UT1 a, • U+S .) j;?1 

*i - . I . ' i i - .J . -r«- J P - ^ 1 * 1] / "' 
xfj xf-3 v., r. . r. 

3 13 1 

2 
k m . Z.-a..Z. C..Z. 

• - 1 • - z -5! { ^ _ ± + ̂ Li }, 
•J i^j i^j v., r_, r_ 

3 lj 1 
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where r^j is the mutual distance between the satellites P^ and Pj, a-M 
is the ratio a^/aj and 

3 -1 1 -1 3 ? -2 
U. = 7- K.D XP. - -K.D Q. - |- <ZD Z(P. - Q.) 

1 -1 3 - 1 3 2-2 
S. = T K.D P. - 4K.D Q. + T < D <p- " Q-> 
: 4 3 3 4 3 *3 4 3 D D 

Z. = - ^ (K. + H.) . 

These three relations are exact up to the first order only; they are 
always multiplied by first-order parameters and then the error will be 
of third order. 

The 5•• are 

gi"gj 
I. . = o.o*5 , 
'iD 1 3 

where gj = Vj/V3 (ratio of Eulerian mean motions), 0j i exp i8gj 
(position of the jth satellite at the epoch) and a* its complex con­
jugate (Ferraz-Mello, 1974). 

The distances r^ may be written 

2 1/2 
r. = a.(1 + U. + S. + U.S. + Z ) ' 
1 1 1 1 1 1 1 

and then, to the first order, 

r-3=a"3 [1 - f (U. + S . ) ] . 

The mutual distances r.^ may be easily calculated to the same 
order; we have 

-3 -3 r . , _,_ -1, ̂  2 -3/2 
Rij = a i t1 ""ji^ij + ^ +«ji] 

- I ^ V - a j i ( « i j + C J ' + a j i ] " 5 / 2 - [<Ui + S i ^ 

- a . . 5 . . ( U . + S . ) - a . . c T 1 ( S . + U . ) + a 2 . ( U . + S . ) ] . 

] H ] 1 : ] H ] 1 : :i : : 

For the developments we follow Sagnier (1973) and we introduce the 
coefficientsY^ ' through 

s 
+°° 

[1 - a..(5.. + CT1) + a 2 . ] " s / 2 = E r
(k)(a..L.5k.. L ji s i : S I D 31-1 's 31 "13 
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(k) 
These coefficients are related to Laplace's b .' (Brouwer and Clemence, 
1961, p. 495) through the relations S / 

(k) , . 1 , (k), . 
Y (a) = — b ,0(a) if a < 1 
s / s/ z 

Y(k)(«) = ̂ -a"Sb(^(a) if a > 1. 
S 2. s/2 

For the brackets which appear in the actual equations we write 

[1 -«..(?.. +C?1) + a
2 . ] - 3 / 2 = S % ( k )

£
k . 

L 31 i: i: :iJ 31 ID 
— 00 

+°° 
[1 - a..(C.. + 571) + a..]"5/ 2 = E Jf!k)5k.. 

3i 13 13 3iJ _„, 31 13 

The disturbing forces arising from the mutual attractions are 

*.. = r {R"<> + R^'D-V + R J ' D ' V + R<
k). n-2(P.-Q.) + 31 ^ K31) 2(]i) j 3(DiJ 3 4(]i) 3 v3 

+ RJ' OS. + RJ' f V + R ™ D"2(P. - Qj}.?
k. 

5(31) 1 6(311 1 7(:ij 1 *i 1̂.3 

+00 

*".. = Z {TJ1?!., + T!kL.D-1P. + T^kLvD
_1Q. + T<k). . n_2(P.-Q.) + 

31 K31) 2(ji) 3 3(3i5 3 4(]i). 3 3 
—00 

5(]iL.. 1 6(31) u 7(:il 1 *i ; ̂ 13 

ji E„ l"l(ji) v"j ' " j ' ' "2(ji) %"i ' "i'J"ij' 
r . . = l {v|k)..N (K. + H.) + v'k> (K. + H.)}?k., 

(k) (k) (k) 
where the coefficients R ,..,, T ,..,, V ,.,, are numerical factors 

m(:i) m(3i) m(:i] 
that depend only on the mean distances aj. The function /j which appears 
as a factor in the integro-differential equations may be calculated 
after its definition 

x. = (l - jc2)_1l(l + s.) <». - (i + u.j ir.], 

where 

C2 = (1 + U.) (1 + S.) 
3 3 3 

It follows 

Xj = .5- X3i J 1̂ 3 
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and 

X.. = r { x ! » + X ^ . . 1 D '
1 P . + X«W.,D-

1Q. +X^...D-
2(P.-Q.J + A " 1 'Ti) 2(]il 3 3(ji) K3 4(33.1 3 *3,: lji _ KJ^ 

5(:i) 1 6(31) "1 7(:i) 1 xi ^13 

When calculating D~^xj it is enough to restrict it to the first-border. 
(k) 

Then, since the X ,.1X are of first-order in the disturbing mass, it 
c ,, 111(31) 
follows 

X ^ _„ M g . - g . , ) " 

This primitive function in singular when k = 0 unless X is also 
l ( 3 1 ' (.n (+ 1 ) 

equal to zero; this fact indeed happens as a consequence of 'S. . = <§ 
31 31 

3. JUPITER'S SHAPE ACTIONS 

In rectangular coordinates the equations of the motion of the j-th 
satellite under the action of the planet writes 

x. - 2Ny. - N2x. = -2-T k2(l + m.) (— + fi) 
: : 3 3x. 3 r 

y. + 2Nx. - N2y. = -~~ k2(l + m.) (— + 9) 
3 3 3 3Yj 3 r 

Zj = 3 i - k 2 { 1 + m 3 » ( r ~ + " > ' 
J J 

where „ , k 
1 4 J k R 

fi = Z ~ P , (sin B,). 
3 k=2 r. 

3 

and N is the angular velocity of the rotating Eulerian frame. The zonal 
harmonics of subscripts greater than 4 are neglected, as well as the 
tesseral harmonics and the harmonics related to the shape of the 
satellites (Ferraz-Mello, 1966). J2 is considered as a first-order para­
meter while J3 and J4 are considered as second-order parameters. It 
follows x. J~R2x. J.R X. 

x - 2Ny - N2x = -k2(l+m ) {-l + f -L3-I - if -i^L} 
r. r. r. 
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9 7 yn ? J ? R 2 y n m J 4 R 4 Y H 
y + 2Nx N 2

Y j - - k
2( 1 +m ) { -1 + \ JL^L - 1| ^ } 

r . r, r. 
J J J 
2 2 

„ Z.a. . J_R Z.a. 3J„R Z sing. 
Z. = -k2(l+m,) {-i-l+f

 2 , 3 3 + - ^ 1-
3 3 3 2 5 4 

r. r. r. 
3 3 3 3 

3J,R Z 
2r 

In these equations &-> is the latitude of the satellite over the planet's 
figure equator and Z_ is the third coordinate of the planet's figure 
pole. If the special coordinates Uj and Sj are introduced instead of Xj, 
yu we may derive the values of the force components 31A , &~j and T̂ J due 
to the non-sphericity of Jupiter. We have 

2 4 
3J R 15J R 

». = A . a J [ - ^ - * — ] (1+U.) 
: : 3 2r5 8rv 3 

J 3 
3J R

2 15J R4 

^. = A.aJ [-̂ - f—] (1 + S.) 
3 3 3 2r5 8r7 : 

3 3 
, 3J R2 3J R2sinS. 3J R3 

*\ = A ,aJ — £ — Z . + A .a. [—=-j 3. £ _ | Z . 
3 3 3 2r5 3 ^ r4 2r5 P 

3 3 3 

These disturbing forces may be expanded as in the previous section. It 
follows then: 

&. = R.... + R...,D-1P. + R.,.,D~1Q. + R.,.,D-2(P. - Q.) 
3 K3) 2(3) 3 3(3) *3 ,4(j) 3 3 

^ • = T, , ., + T„, ,,D~ P. + T., .,D~ Q. + T. , . ,D~2(P. - Q.) 
3 K3) 2(3) 3 3(3) *3 4(:) 3 *3 

"V• = Vn / ̂  + v w -\ <K- + H.) + V„, K + V., ..H . 3 Op(3) 1(3) 3 3 3(]) p 4(3)p 

The coefficients Rm(j)» Tm(i) anc^ vm(j) a r e numerical factors depending 
only in the mean distances. Xj in the order of approximation of this 
theory is zero. In the calculation of ifj the coordinates of the pole of 
inertia of Jupiter intervenes also through 

x.x +y.y +z.z 
sin e- = ^U? 3J2 U?. 

: r3 

If I_ and flp are the inclination and the longitude of the ascending 
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node of the figure's equator, then 

x = sin I sin Q 
P P P 

- sin I cos fi 
P P 

Z. = Z = 1 
p. p 

except for terms of the third-order in the equations for xDYD and of the 
second-order in the equation for Zp. We also introduce two" new para­
meters 

K = sin I exp i (fi + -—) 
P P P 2 

3TT 
H = sin I exp - i (fi + •—) . 
p p P 2 

4. THE MEAN EQUATOR OF JUPITER AS REFERENCE 

The inclination of the equator of Jupiter over the planet's 
orbital plane is 3?07. 
plane, we have 

If the orbital plane is conserved as a reference 

K . - 0.06 
1 r 

0.004 0.0002 

since the satellites move very close to the plane of the equator of the 
planet. We may compare these figures to those for the eccentricities: 

: 
10 |p.|2 - io"4. 

1 ' 

These figures allow us to see that if the orbital plane of Jupiter is 
kept as the reference plane, we need the third powers of the Kj to get 
the same precision as that of the second powers of the Pj. To reestablish 
homogeneity it is convenient to adopt the mean equator of Jupiter as the 
reference plane; in this case we will have | Kj | 2 ~ 5x10"-'. 

Let x be the matrix of the coordinates with respect to the mean 
equator of Jupiter and X the matrix of the coordinates with respect to 
an inertial plane close to the plane of the orbital motion of the planet. 
We have 

(1 + R) . X, 

where 
sin 9 (cos 1-1) 

P 
sin9 cos9 (1 - cos I) 

P P 

sin9 cos9 (1 - cos I) cos 9 (cos I - 1) 
P P P 

sin9 sin I 
P 

cos6 sin I 
P 

-sin9 sin I •» 
P 

cos9 sin I 
P 

cos 1-1 

The equations of the motion of a satellite in reactangular coordi­
nates writes (Section 3) 
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O 

5T 

A: 

• & 

©„-«, 

«*£*"* 
\PA-

AX + BX + cx = sew 

where A i s the u n i t - m a t r i x , 

( 

B = 

0 

2N 

0 

-2N 

0 

0 

0 

0 

0 

<d9 

C = I 

-N 0 0 

0 -N2 0 

0 0 0 

and if(X) is a vector function of X. It is important to observe that iP(X) 
depends on X in two different ways: directly through linear relations 
and indirectly through intrinsic parameters like distances, mutual dis­
tances and latitudes. Then 

(1 + R) . JS?(X) •SflX) 

If the rotation matrix (1-R) is applied to both sides of the equations 
of the motion it follows that 
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-1 • -1 
Ax + Bx + Cx = &{x) + BR(1 + R) X + 2AR(1 + R) X -

- 2A[R(1 + R)_12]x + AR(1 + R)_1x. 

The matrix R is 

-sin 29 (1 - cos I) cos 29 (1 - cos I) -cos9 sin I 
P P P 

cos 29 (1 - cos I) sin 29 (1 - cos I) -sin6 sin I 
P P P 

cos 9 sin I sin 6 sin I 0 
P P 

Since 9p is very small, 2.185xl0~
6 degrees per day (Tisserand, 1896), 

we may neglect the term in which R^ appears; also, since 9D = 0 we 
also neglect the term in R. The new equations are P may 

-1 • -1 
Ax + Bx + Cx = (x) + BR(1 + R) x + 2AR(1 + R). x. 

The effect of the adoption of the mean equator of Jupiter as the 
reference plane is the introduction of the disturbing force BR(1 + Rj_"-̂x 
+ 2AR(1 +'R)-1x. The magnitude of this force is at most equal to 
3xl0~6 AU/y2 per unit mass. It may be compared to the magnitude of the 
mutual interactions between two satellites (10~2 to 10"* in the same 
units). They will be neglected, and we will adopt in the new frame the 
same equations as in the inertially oriental frame. As a consequence, 
this theory will not be able to show the eventual existence of inequal^ 
ities of very long peridds (4.5xlOr yr) arising from the precession of 
the equator of the planet. 

In the preceding section, in the expansion giving "fj the parameters 
Kp and Hp were related to the inclination and longitude of the ascending 
node of the true equator over the reference frame, i.e., the orbital 
plane. In the new reference frame we consider. 

3 
K = I . e x p i(ft + — ir) 

3 
H = I . e x p - i (J2 + -rV\ 

and t h e n 

"f- = Vn / M + V. . .. (K. + H.) + V , , . , K + V . , . , H . 
: o p ( : ) i ( 3 ) : : ' 3 (3 ) ( 4 j ) 

The fundamental relations of the spherical triangle NAB allow us 
to write 

s i n I . e x p i ( 9 - Q) = s i n I exp i ( 9 - f t ) - c o s l . s i n I + 
P P P P P 

+ s i n I c o s ( 6 - ft ) ( c o s 1-1) 
P P P 
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or, neglecting all terms of second or higher order with respect to I, 

i.exp(-ifi) = sin I .exp (-in ) - sin I.exp - i9 , 

and then 

3TT 
H = H - sin I.exp - i(9 + — ) 

P P 2 

3ir 
K = K - sin I.exp i(6 + — ) 

P P 2 

The new expression for r. is then 

r. • = v n, -x + V. . ., (K. +H.) + V_ . .. K + V„ , .,H , 
3 u(:) K:) : r 3(3) p 4(3) P ' 

where 
3 R2 -1 

Vn, .. = Vn_,^ - r L J „ - s i n I . ( C , - C ) • 
IIP IIP a. 

3 

In analogy to former parameters we introduce 

£. = a .a* 5 
DP : P 

where 
a = i exp i8 g v., = v and v = 9 - N. 
P op 3p 3 p p p 

5. MOTION OF THE POLE OF JUPITER 

The researches of Souillart and Laplace (Tisserand, 1896) show 
that it is not possible to consider the motion of the orbital plane of 
the satellites and the motion of the equator of the planet separately. 
These motions appear in the approximation considered here, as a linear 
system with 5 degrees of freedom. 

If the planet is supposed to have axial symmetry, we have (Ferraz-
Mello, 1972) 

sin I h = - I — (r=—)y. 
p p rC 3Zj 'u 

T V l , 9 W X" 
X

P - - ; « ( ^ - ) x j 
3 3 

where C is the polar momentum of inertia of the planet, r the angular 
velocity of the planetary rotation, and XJ,X/J are the rectangular coor­
dinates of the disturbing bodies in a frame in which, the true equator 
of Jupiter is the fundamental plane of reference, and, in which, the 
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x-axis is directed to point A (see Figure 1 in the preceding section) 
ascending node of the true equator over the inertial frame. We have 

x. = x..cos 9 + v..sin 6 
3 3 P 3 P 

y. = -x,.sin 9 + y..co"s 9 
3 3 P 3 P 

the other components of the rotation, the amplitudes of which are I, -I 
and 9 -Q. , give rise to corrections small enough to be neglected. We 
still have 

a 4k m.J R 
3 w 3 2 . n 

_ _ + sin B 

which is proportional to the torque of the attraction of the satellite 
about the polar axis of the planet. These equations and the quantities 
Kp and Hp already defined allow us to write the equations of the motion 
of the equator of Jupiter in a suitable form. From the definition of K p 

we have 

3TT • 3TT 
K = cos I .1 exp i(JJ + —-) + i.sin I .0, .exp i(0, + -—) 
P P P P 2 p p ^ p 2 

and then 
2 2 

4k m.J R g . 
K = £ — , — i _ — a.ia. £ ""sing . . 
P j 3rcr4 ^ 3 3 

If we observe that 

1 gi 3ir 
i. = 7 0 . ? J[H -sin I exp-i(6 + — ) ] + 
J £ J p Z 

+ jO*X J[K -sin I exp. i(9 + |^) ] - \ (K + H ) 

we obtain 

DK + K K = Vn, , + B., .H + Z V., x (K. + H.) p p p 0(p) l(p) p 3(p) 3 y 

and in a similar way 

where 

D H - K H 
P P P 

V P ) - ] ~ 

' "VO(P) " 

2 2 
2k m.J R 

: 2 
„ 2 3 
3Crv a 

3 3 

V* ,K - I V* ,(K. + H.) 
K P ) p 3(P) 3 y 

3-rr 2 2 g j 
sin I.exp-i(9 + — ) a . £ + K sin I 

3TT, 
exp i(9 + — ) 
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2 2 
2k m.j„R . 2g. 

3 2 2 3 

2 2 
2k m.J R g. 

3 : 

and „ 2 2 
2k m,J R 

3 2 K = - I • 

P 3 
j 3Crv a. 

6. SOLAR PERTURBATIONS 

The disturbing actions due to the Sun are given by the same rela­
tions as for the satellites when i=o (see Section 2). The difference is 
that in this case the a-jg are very small (5xl0~^ to 3xl0-3) . The quantity 
rg^ may be expanded in the powers of OI-JQ without the need of introducing 
new Laplace coefficients. Up to the second-order we have 

"3 "3 r, 3 ,ac\2, ^ , 3 2 ,a0.2 
r = r {1 + - a (—) (us + s u.) - - a (—) u s + 
0: 0 2 3O rQ 0 ] 0 3 2 jO rQ 3 3 

,a0,2 15 2 ,S0,4, ,2, 
+ 3a . — ) Z^Z . + —- a . (— u s . + s_u .) } , 

jo vr 0 ] 8 :0 rQ 0 ] 0 : 

where g. -g. 
u. = a. z, :(1 + U . ) ; s. = a* r, 3 (1 + S.) j=0,l,2,3,4. 

After the substitutions 

3- = I (T(k) + T ( k ) D_1P + T ( k ) D_10 + 
*j0 ' - lTl(j0) T2(j0)D Pj T3(j0)D Q

3 
r ' Ck) -2 k 

+ Ti(5o,D ( P J ^ , K S 3 
3 k m0Z0 a0 2 -1 1 k m0 

""jo = " I -TT 0 t(1+V?
oj

+(1+so^o 1 " I T T ( Y V 
v r 0 v r 

3 0 3 0 
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and also 

X 
j0 ' l

( ô " V + I KjD"1(pj-Qj) ̂ V ^ o * + 

+ §• [K.D^P.-SK.D^Q. + S K V ^ P . - Q . ) ] ^ -

- ~ [ 3 K . D _ 1 P . - K . D - 1 Q . - 3 K 2 D ~ 2 ( P . - Q . ) ] ^ „ 
8 L 3 : 3 3 3 3 3 J^j0 

where ̂ ?-jQ anc^ ̂ jO represent the first-order terms of ̂ J Q and ̂ jo- T n e 

(k) (k) 
R .... and T ..„, are numerical coefficients. 
m(':0) m(jO) 

The introduction of the solar perturbations does not give rise to 
any difficulties except for the complexity of the formulae giving the 
relative motion of Jupiter around the Sun. In this theory Ug,Sg and Zg 
are considered as known functions of the time through the Theory of Hill 
(Hill, 1890) and they are written in a form compatible with the kind of 
alcrebra adopted here. All terms which give rise to long-period inequal­
ities of amplitude larger than 0.1 arcsecond, and especially those that 
give rise to secular inequalities must be kept. In this paper, for the 
sake of simplicity, we restrain ourselves to 

(0) (2) 2 
*j0.- Rl(j0) + Rl(j0) C0j 

sr = R ( 0 )
 + R ( 2 ) T 2 

yj0 l(j0) l(jO) ^0j 

These resctrictions are justified because k^mg/^rg is a second-order 
quantity; the terms which are not considered are quantities of third-
order. These restrictions do not affect the presentation of the theory 
itself but only the actual calculations. 

7. THE INTEGRO-DIFFERENTIAL EQUATIONS. FINAL FORM 

In order to obtain the final form of the integro-differential 
equations for Pj and Qj we must collect the partial contributions of ̂ j , 
•̂ j and xj an|3 to introduce them in the equations of Section 1. So we 
obtain 
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where P and Q are 4-vectors whose components are respectively Pi,P2,P3, 

P4 and Qi,Q2,Q3»Q4;
 x0 = d i a 9 <Kj); 

+00 

A 1 = d i a g { S Z X<k> C k . l ; 

V a n d V a r e t h e 4 - v e c t o r s w h o s e c o m p o n e n t s a r e 

v1 1 ( j ) = - ^ £ ! i _ i _ R E r <U«<> + J-xJk> uk . 
K. 1 ( 3 . , . K. l ( ] l ) 4K. l ( ] l ) 13 

K : 3 i f : - » 3 3 

1 1 
V = - -— <9 - —- f 

2 1 ( j ) K . JO 4 K . JO 
3 3 

a n d M , , M a n d M a r e m a t r i c e s w h i c h c o m p o n e n t s a r e 

+00 

M , , , . . , = T U . - K 2 ) - ^ ~ * n , . v - 2 r ( [ 2 ; 3 ] ~ ^ K . X * k ) . J C k . 
I K : : ) 4 3 : K 2 ( 3 ) ± ^ j __ 8 3 0 ( 3 1 ) ^ 1 3 

+00 

M . 1 H . = - E t 1 - * ^ ^ + T-^lk\> 5 k . (DVD l l ( 3 i ) K . 5 ( 3 1 ) 4 K . 5 ( 3 1 ) 13 
-00 ] -j 

+00 

M , o r M = - 7 ( * . - K 2 ) - \ r > " 2 2 ( [ 3 ; - l ] + 3 K . X k . . . ) C k . 
1 2 ( 3 : ) 4 j 3 K 3 ( 3 ) ^ _ „ 8 3 0 ( 3 1 ) 13 

1 2 ( 3 i ) K . 6 ( 3 1 ) 4 K . 6 ( 3 1 ) " 1 3 
-co -J J 

+co 

N„ « , . . . , =^.(^.-<2) -^—R,,., - T. T. [ 4 ; - 3 K . ] £ k . 
1 1 ( 3 3 ) 4 j ' 3 3 < j 4 ( 3 ) i ^ j ^ 3 ^ 1 3 

+ - 1 

N . . . . , . = - £ (— R_(k) 1 ( k ) k . . . . . 
1 1 ( 3 1 K . 7 , . . . + - -X _ , . . . ) £ . . ( 3 f i ) 

3 ( 3 1 ) 4 K . - 7 ( 3 1 ) ^13 

where the brackets mean 

K. a(3i) 4K. a(3i) 16 K31) 

We still have Vi2=vfi, V22=v21• N21=M11' M22=M12/ N12=- Nll' N21=N11 a n d 

N22=-Nll where the asterisks indicate complex conjugation. 
This equation still may be written using vectors and matrices of 

rang 8: 
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- 1 - 2 
XP + X P + L P + V + V + M D P + N D P = 0 

where the symbols introduced have obvious meanings; still, in every 
case the subscripts give the order of magnitude of the elements they 
represent. 

8. THE AVERAGING METHOD OF KRASINSKY 

In order to reduce the integro-differential linear equation we 
introduce the linear transformation (the subscripts indicate the order 
of the term) 

P = P + B + B + C.P + E D P + T D P. 

It follows the new integro-differential equation: 

_1- . _2-
DP + DB + DB + DC..P + C .DP + DE .D P + E .P + DT .D P + 

+ T^D" P + xQp + XgBj + X Q B 2 + X ^ P + X ^ D - 1 : ? + X Q T ^ - 2 ? + 

+ L P + L B + V + V + M D~ P + M D~ B + N D~ P + 

-2 
+ N.D B„ = 0. 

1 1 

The optimum transformation would be obtained if we could find constant 
vectors b^ and b2» and constant matrices e^,f^ and gi such that 

^V'^V^WWhVVVV^VV^V =bi+b2=bi 

(I+C^r^DC^+E^XQ+X^+L^ = X0+ei 

(I+C1)~
1(DE1+T1+X0E1+M1)=f1=0 

(I+C1)
_1(DT1+XQT1+N1)=g1=0 

if we restrict these equations to the second order and if we equate 
separately the terms of different orders, it follows that 

DB1+X0B1+V1=b1 

D T 1 + V2 + N l = 9 l=° 

D E ^ T ^ X ^ + M ^ f ^ O 
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DC1+X0C1-C1X0+E1+L1=e1 

DB2+V2+LlBl+MlD"lBl+NlD"2Bl+V2-Clbl=b2=0 

These equations have been written following their increasing difficulty. 
If they are solved adequately the integro-differential equation becomes 

DP + X P + e P + b = 0, 

and it may be solved by elementary methods. 
The fact that gĵ ,f̂  and b2 are made equal to zero will become clear 

in the following section. 

8. DISCUSSION OF THE EQUATIONS 

To discuss the first equation let it be decomposed into its two 
parts of rang 4: 

D B i i + x o B n + v i i = b i i 

DB12-X0B12+V12=b12; 

the complex conjugate of the first part is 

DBtrVirvir-bn 
(b. =b.. since this vector is constant). The comparison lead to 

B12 = B*1 and *>12 = -*>!!• 

The problem is reduced to the solution of only one of the two rang-4 
equations. Equating the elements for the first of them we have 

DBll(j) +KjBll(j) +Vll(j) =bll(j) 

and we adopt the solution 

- y +v 1 A R(k) +J_XM )F* 

b.. . . , = - — (A.-K2+R. ,.>! - Z -T—lAr,(-°l ^ ^ ^ 
H O K. : : id) . i1t. 4K <4R 1 ( j i l + x r ( j U i 
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i.e., we put the secular terms in b^ and the periodic terms in B^. 
Let the second equation be decomposed: 

D T i i + x o T i i + N n = g i i 

DT21-X0T21+NIl=g21 

DT12+X0T12-Nll=gl2 

D T22-X0T22-NIrg22-

As for the f i r s t equat ion we obta in 

rp _ _ m * rp _ _ rp* m __ _ m 

21 11 22 12 12 11 

g21 = g U g22 = gi2 gl2 = ~ gll 

The question is then reduced to the solution of only one equation 

DT.. + X„T., + N., = g, . 
11 Oil 11 ^11 

and we adopt the solution 

1 2 1_ +°° I 4 ' - - 3 ^ ] ^ 
Tll(j j) = " 4

a
j "

K
j
) +

 K 2
 R4(j) " .J. ̂  k(g.-g.)+K. 

T = y 7(3i) 7(]l) k 
ll(ji) _M 4K [k(gi-g.)+K.] ^ij (j^i) 

gll(jj) = gil(ji) = °-

The condition of validity of the acove solution is 

k(g±-gj) + K . / 0 (i^j) 

or, since K. = g. + m (m=-0.01448): 

k(gi-gj) + gj + m ^ o. (i^j) 

For the three inner satellites gj are integers (4,2, and 1); the condi­
tion of validity reduces then to m^Z. For the fourth satellite g4=0.437. 
It is easy to see that we do not have a small divisor. In the problem of 
the motion of an asteroid disturbed by Jupiter this leads to exclude the 
commensurabilities of the kind 
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a K . + b K . = 0 ; a + b = 1. (a,beZ). 
l 3 

The third equation may be discussed exactly in the same manner as 
the former two. The fourth equation shows special features and will be 
explicitly discussed. After decomposition we have for this equation two 
independent relations: 

D Cn+ xocirciiVEii+ Lireii 
DC12+X0C12+C12X0+E12+L12=ei2-

The other two relations do not need to be considered since we can prove 

that C22=Cli, C2i=Ci2/ e22=-ef1
 a n d e21=_e12-

The basic difference for the above equation is that the method of 
Krasinsky does not allow us to eliminate all periodic terms. For in­
stance, for each (j/i) from the first equation we have 

DC. ...., + (K .-K.)C. . , . ., + E. . . .., + L. , , . ., = e,, . . .. 
ll(3i) 3 1 H(]i) ll(li) H(li) ll(ji) 

therefore, if terms factored by £j_j exist in the non-homogeneous part 
of the equation, since their motion is exactly (KJ-K^) , they lead to 
null divisors. These terms must then be excluded from the equation. We 
adopt 

e U ( j j ) --7f4(j)
 + ̂ 2 ( j )

 + .J. {V4;-f-]+^2'Ti-

7 v(0) , 
- 8 X 0 ( j i ) } * e j i 

= _ 4R7(Ji)+X7(ii) : _ 4R5(ji)+X5(ji) = g 

ll(ji) 4<.K? ij 4K.K. ^ij ji ij 

e12(jj) = e12(ji) = °-

Now the system giving the components of the matrices C ^ and C^2
 m aY 

be solved. The condition for the validity of the solutions are 

k(g.-g.) + K. + K. ± 0 
1 : 1 3 

k(g.-g.) + 2K. ? 0 

V g j ' °-
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These relations exclude two well-known families of commensurabilities: 
(a) the trojan commensurabilities 

aK . + bK . ; a + b = 0 (a,b e Z) 
i 3 

(b) the commensurabilities 

a K . + b K . ; I a + b| = 2 (a,b e Z ) . 
i 3 ' ' 

9. THE GALILEAN CRITICAL TERMS 

•The fifth equation arising from Krasinsky's method may be decom­
posed intwo two 4-vector equations which are complex conjugates. Let one 
of them be considered. 

DB21 + X0B21 + I A \ l " I AlB12 + M 1 1 D " 1 B 1 ! + M 1 2 D _ 1 B 1 2 + 

+ N nD-
2
B l l - NnD-

2B12 + v 2 1 - C n b n - C 1 2 b l 2 = b 2 1 

The solution which is adopted is 

b2 1 = o 

B21(j) = Z 5 s ( B 21(j) ) 

s 

(sum of parts arising from different terms of the non-homogeneous side 
of the equation). The parts which arise respectively from (̂  A-'-Bi\) (jj 
and (MnD~^B^) (j) have the form 

kkVk rk" 

6,<B„W.J = Z I I I J l 1 13 l3 

1 2 1 ( j ) i^j i^j - -co Kj + ^(gi-
gj) + k ' ( 5 i - 5 j ) 

& 0) 

and B k k V k fk" 
+<» +«> jil ij 11 

V^Kj)1 - .1 * Z S Kj + k ( W +k,<Vgi} 

1^3 l^H -oo +co 

They introduce as new conditions of validity 

K. + k(g -g.) + k' (g^g.) ^ 0 

Kj + k(gi"9j) + k,(g1-gi) ? 0 
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10. SOLUTION OF THE EQUATIONS FOR Pj and Qj 

The 'averaged' equation is 

4 
DP. +K.P. + I e,,,..,P.+b..=0, 

3 ]] i = 1 u d : ) i l] 

this equation is not actually averaged since 

ell(ij) = eijCji" 

If the variables pj = pjOj£ -1 are introduced, we have the linear differen­
tial equation with constant coefficients 

Dp. + Z e. .p. + a,b. .eK3 = 0 
3 ± i] i 3 i: 

whose general solution is 

4 -R. 
P. = 2 A..C *\-
3 i=l 3 1 

the constants Aj^ may be known if four among them are supposed as known 
integration constants. The motions 8^ are the roots of the characteristic 
equation 

det(e.. - 66..) = 0. 
13 ID 

These characteristic roots are the motions of the proper perijoves of 
the satellites in unities of the Eulerian mean motion V3. 

The particular solution of the complete equations is easily 
obtained; it gives rise to terms having the same frequencies as those 
of the satellites. The mean feature of the solution obtained in this 
way is the Laplace's result after which it is not possible to separate 
the proper oscillations. The system oscillates as a whole: every satel­
lite shows in its motion the four proper oscillations. 

11. THE EQUATIONS FOR K. AND Hj 

In order to obtain the final form of the differential equations 
for Kj and Hj we must collect the disturbing terms and substitute them 
in the space equations given in Section 1. It follows 
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which are satisfied in the problem of the motion of the Galilean 
satellites because m^Z. 

The Galilean critical terms are those for which 

k(gi-gj) + k'Cg^g ) = 0 

k(g -g.) + k'(l-g ) = 0. 

They may arise in two different ways* (a) the trojan resonance, which 
happens in the case i = 1, when g. = g. ,' i.e. in the case 

aK. + b<. = 0; a + b = 0 (a,beZ), 

(b) the Gal i lean resonance, which happens in the case i ^ 1, when 

a<, + b<. + CK. = 0 ; a + b + c = 0 ( a , b , c e Z ) . 
l 3 1 ' ' 

In this case it is possible to find a system of rotating axes for which 
KJ_,K-J,K;L reduce to three integers g-j_,g-j,gi (as it has been made in this 
theory). Indeed, if K^ = g^ + m, since a+b+c = 0, we have 

ag. + bg. + ch, = 0 
i 3 1 

a(gi-g1) + b(g -g1) = 0; 

the last equation has always integer solutions. We may still choose the 
rotating axes so that 

agi ~ b gi = a gl " b gj = ° 

i.e. 2 

gi = gi-gj 

which gives rise to the following situation 

2 
gi = 1, gx = a, g. = a (aeZ); 

the Galilean satellites are such that m=0.01448 and a = 2. 
The Galilean critical terms do not disturb the integration of the 

integro-differential equation; they will actually become critical when 
the geometric equations are considered. 

The other parts of the vector equation will introduce terms 
exactly like the two discussed above. The only part which introduces 
terms which are different, is that which contains the solar perturba­
tions: 
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+ 00 

DK.+K.K. = — 2 V{(V 1
( 1 ? ) . , + W*\ . J 5 k . + ^ - V W . , } ( K . + H . ) + 

: 3 : K , , , . Li K D I ) 2 i ( : i ) s i 3 3K 1(3) 3 3 
J 1 f J —00 J 

+00 

+ — I I V™. . , 5 * . ( K . + H . ) + 

+ — { V _ , . , K + V. , . , H + V - , . , + l T . } 
K. 3(3) p 4(3) p 0(3) 30 

and i t s complex c o n j u g a t e f o r -DH-J+K-JHJ . To t h e s e e q u a t i o n s we must add 
t h e d i f f e r e n t i a l e q u a t i o n s g i v i n g t h e mo t ion of t h e p o l e of J u p i t e r : 

DK +K K =V ,+V. , .H + E V , . . (K.+H.) 
p p p 0(p) 1(p) p . 3 (p) 1 x' 

DH -K H =-V_. , -V* K - Z V* , ( K . + H . ) . p p p 0 (p) l p p . 3 (p) 1 1 ' 

All these equations may be written using vectors and matrices of 
rang 10 

DX+X'K+L'K+V'+V' = 0, 

where the new symbols have evident meanings. This vector equation may 
be averaged by means of Krasinsky's method, by using -the transformation 

K=K+B'+B'+C'K. 

The averaged equation will have the form 

DK+X'K+e icv= 0 

and may be solved by elementary methods like those used in the preceding 
section. The main feature of the solution thus obtained is Laplace's 
result after which it is not possible to separate the proper oscillations 
in latitude as well as the proper oscillation of the planetary equator. 
The systems oscillates as a whole and the plane of the motion of each 
satellite and the plane of Jupiter's equator show the five proper 
oscillations. 

The details of the actual calculations are nothing but similar to 
those for Pj and Q-;. 

12. THE GEOMETRIC EQUATIONS 

At least we need to consider the geometric equations 

1 1 1 
De = TK. (P.-Q.) - -pc. (P.+Q.)r.+ -TK . (K.+H.) (K.-H.) 

3 2 3 3 3 4 3 3 3 3 4 ] l ] 3'x 3 3' 
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1 3 
DT. = -3K. e. + TTK.(P.+Q.) - -rK . (P.+Q.)e . -

: : : 2 ] r ] 2 : : V j 

- TK. (P.-Q.) -T. + -K.[(K.-H.)2 - i(H.+H.)2] + 2K.e2. 

Now P_i ,Qj ,K.j ,Hj are known functions since these variables have been 
supposed to be integrated in the preceding sections. These functions 
contain the four circulatory frequencies g-;, the four oscillatory fre­
quencies fir. = B-JV3 and the five oscillatory frequencies £2* = 6^3. The 
geometric equations may be considered separately for each satellite. 
For this reason in what follows subscripts will be omitted. We have, 
after substitutions 

De = S + S T 

2 
Dr = S„ + (Sr - 3 K ) E + SV + 2KE 

4 5 6 

where 

S. = E S . r(k); 
1 k l k 

(k) 
Z, means £ to the power arising in the k-th term of the series. Two 
particular cases are of importance: ^ W = £u and £l = C where G is 
the critical Galilean frequency 

G = gi " 3g2 + 2 g 3-

All series are first-order and the series S^ and S4 contain also 
second-order parts. The galilean critical frequency may appear only in 
these second-order parts. The averaging method of Krasinsky is used 
notwithstanding the fact that the geometric equations are not linear. 
Such use is possible since the coefficient of the non-linear term is a 
constant. We consider the transformation 

e = Y1 + (1 + Y2) £ + Y3r 

r = Y. + (l + Y )f + Yr£, 
4 O b 

where the Y.; are all first-order and Y^ and Y^ have also second-order 
parts. After substitution we have 

De = S1-DY1+S2f+S2Y4-eDY2-rbY3-Y2(S1-DY1)-Y3(S4-DY4) 

+ 3 K Y 3 ( Y 1 + £ ) 
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Df=S .-DY + S c £ = S , . f + S Y + S , Y . + 2 K £ 2 + 2 K Y 2 + 
4 4 5 6 5 1 6 4 1 

+ 4 K £ Y - r D Y - E D Y - 3 K £ - Y c ( S „ - D Y J - Y r (S - D Y , ) + 
1 b b b 4 4 b l l 

+3KY (Y +e)-3KY +3<Y e-3<Y r, 

to reduce these equations to 

D£=W +W T+W £ 

Df=w -(3K+W )e+W f+2<e , 

where the W. are free from non-libratory periodic oscillations, it is 
enough to solve 

S11-DYn=W11 

S 1 2 - D Y 1 2 + S 2 Y 4 r Y 2 W i r Y 3 W 4 r W 1 2 

S 2 -DY 3 =W 2 

3 K Y 3 - D Y 2 = W 3 

s 4 r D Y 4r 3 K Y n = w 4 i 

s42-DY42+s5Yii+2KYirY5w
4rY6wir3KYi2+s6Y4rw42 

S -DY^+4KY, ,+3KYr+3KY =-W_ 
5 6 11 5 2 5 

S -3KY -DY =Wr 

6 3 b b 

in which the series where the indices were 1 and 4 have been split in 
first-order (indices 11 and 41) and second-order (indices 12 and 42) 
parts. The integration is easy. The first equation, for example, leads 
to 

"ir̂ n* 
Y1 1=D-

1(S1 1- W l l), 

where <S^> means the constant term in S«i. In the equations for the 
second-order parts we need to include in the average not only the con­
stant but also the critical terms. 

https://doi.org/10.1017/S0252921100062308 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100062308


234 S. FERRAZ-MELLO 

The difficulties in the integration of the averaged equations, in 
reason of the critical terms, is the same which appear in Laplace's 
equations for the inequalities of the mean longitudes. As we know, the 
critical terms lead to libration in the mean longitudes whose period is 
close to 6 years and whose amplitude is an integration constant to be 
determined from the observations. This determination is a very difficult 
problem since the amplitude is very small. In 1907 de Sitter found 
0!l58 ± 0^033. In 1928, after a new discussion (de Sitter, 1931) he 
found CL0247 ± 0^0075. In a discussion using only the first satellite 
he found an amplitude 4 times greater, and using only the second 
satellite the amplitude remained unchanged but the phase shifted by 1009 
These determinations are very uncertain and they did not affect the mean 
residuals of the observations. At the same epoch Brouwer (1928), from a 
different set of observations found 0°0309 ± 0t0058 for the amplitude of 
the libration. Also, when using separately the first or the second 
satellite he obtained contradictory results. He concluded that the libra­
tion is much too small to be determined from the observations. 

This fact justifies omitting the libration and integrating the 
averaged equations using G=0 identically. The solution in this case may 
be easily obtained. 

(a) W n = 0; indeed Wj] = <Sn> = 1sKj<Pj-Qj> = 0, since Pj and Qj 
are complex conjugates and so Pj-Qj is a sinus series. 

(b) W3 = 0; the solution Y3 of the equation S2-DY3=W2 is an odd 
function because the parity of the series is changed by the operator 
D~l. The result then follows as in (a). 

(c) W12 = 0'" the proof of this statement is longer. By Krasinsky's 
method we have W12 = <Si2 + S2V41 - Y2W11 - Y3W4i>; the analysis of the 
parities must be made with details but it is algebraically elementary. 
W12 will have the form A(£G-£-G) and its average is zero under the 
hypotheses previously adopted. 

(d) Wg = 0; this result follows as in (b). 
Thus, the remaining system is 

De= W f 

-2 
Dr= W -(3K-W )e+2ice 

and we have 

2-
D £ = -v =— = W W - (3K-W 5)W 2£ + 2KW 2£ . 

dt 

This equation is the equation of a non-linear oscillator. Its stationary 
solution is 

W W 2W 
1 = £E = 37 [1 + 37 + i7"]-

If this stationary solution is substituted in the equation for r it 
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follows that Dr is equal to a non-zero constant: -2W4/9 . Then r(t) and 
<(>(t), will have one term which is linear with respect to time. The exis­
tence of such linear term contradicts the working hypothesis that the 
frequencies n^ are exactly the observed mean motions. Thus, this linear 
term may not exist. We impose W4=0, in order to have the solutions f=0, 
e=0. The equations W4=0 determine the normalization parameters aj, mean 
distances from the satellites to the planet.. 

This technique may be compared to the technique recently suggested 
by Eminhizer et al. (1976). Indeed the variational equations built with 
respect to a given set of circular orbits (intermediate orbits) allow us 
to introduce a fixed set of frequencies; these equations are a 'relocated' 
version of the equations of motion. Note that the 'relocation' in this 
case is restricted only to the mean motions. The Eminhizer et al.'s 
'forward scheme' would consist in the improvement of the introduced 
frequencies while the mean distances aj were kept fixed (frequencies 
normalization). The technique adopted in this theory is similar to 
Eminizer: et al.'s 'backward scheme'; the frequencies are kept fixed and 
the value of the amplitudes aj is improved (amplitudes renormalization). 
In both cases the non-zero solutions of the averaged geometric equations 
correspond to orbits in the neighbourhood of one central orbit. This 
theory allows us to obtain solutions without secular terms. It is hoped 
that the rate of formal convergence of the solution is better than in 
solutions founded on the osculating frequencies 

CONCLUSION 

The theory outlined in a preceding paper has been developed up to 
the second order. The integration has been performed and the possibility 
of doing it completely has been demonstrated. The techniques used are 
able to show the main known features of the motion. They may also show 
new features especially when the perturbations arising from the Sun are 
completely considered. New features may also arise when the coupling of 
the oscillations in longitude and in latitude are considered - indeed, 
on several occasions very weak coupling terms arose and have been 
neglected since they are of higher orders. 
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