This paper may be regarded as a continuation of the investigations begun in [2]; certain intrinsic lattice topologies are studied, especially the order and ideal topologies in Boolean algebras, bicompactly generated lattices, and other more general structures. The results of [1], [2], and [3] are shown to be closely related. It is proved that the ideal topology on any Boolean algebra has a closed subbase consisting of all sublattices, whereas the order topology on an atomic Boolean algebra has a closed subbase consisting of all sub-complete lattices. It is also shown that the order topology on an atomic Boolean algebra is autouniformizable (in the sense defined by Rema [3]) and, if the ground set is infinite, strictly coarser than the ideal topology. The conditions Cl and C3 on a lattice, introduced by Kent [1], are shown to be slightly stronger than the condition “ bicompactly generated ”, and in complete lattices, where these conditions are satisfied, the order topology is shown to be coarser than the ideal topology.