No CrossRef data available.
Article contents
ON IMAGES OF REAL REPRESENTATIONS OF SPECIAL LINEAR GROUPS OVER COMPLETE DISCRETE VALUATION RINGS
Published online by Cambridge University Press: 21 July 2015
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
In this paper, we investigate the abstract homomorphisms of the special linear group SLn($\mathfrak{O}$) over complete discrete valuation rings with finite residue field into the general linear group GLm($\mathbb{R}$) over the field of real numbers. We show that for m < 2n, every such homomorphism factors through a finite index subgroup of SLn($\mathfrak{O}$). For $\mathfrak{O}$ with positive characteristic, this result holds for all m ∈ ${\mathbb N}$.
MSC classification
Secondary:
20G05: Representation theory
- Type
- Research Article
- Information
- Copyright
- Copyright © Glasgow Mathematical Journal Trust 2015
References
REFERENCES
1.Bass, H., K-theory and stable algebra, Inst. Hautes Études Sci. Publ. Math. 22 (1964), 5–60.CrossRefGoogle Scholar
2.Borel, A. and Chandra, H., Arithmetic subgroups of algebraic groups, Bull. Amer. Math. Soc. 67 (1961), 579–583.CrossRefGoogle Scholar
3.Borel, A. and Chandra, H., Arithmetic subgroups of algebraic groups, Ann. Math. (2) 75 (1962), 485–535.CrossRefGoogle Scholar
4.Borel, A. and Tits, J., Homomorphismes “abstraits“ de groupes algébriques simples, Ann. Math. 97 (1973), 499–571.CrossRefGoogle Scholar
5.Fernós, Talia, Relative property (T) and linear groups, Ann. Inst. Fourier (Grenoble) 56 (6) (2006), 1767–1804.CrossRefGoogle Scholar
7.Kassabov, M. and Sapir, M. V., Nonlinearity of matrix groups, J. Topol. Anal. 1 (3) (2009), 251–260.CrossRefGoogle Scholar
8.Margulis, G. A., Discrete subgroups of semisimple Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) (Results in Mathematics and Related Areas (3)) (Springer-Verlag, Berlin, 1991), volume 17.CrossRefGoogle Scholar
9.Niven, I., Zuckerman, H. S. and Montgomery, H. L., An introduction to the theory of numbers. 5th edition (John Wiley & Sons Inc., New York, 1991).Google Scholar
10.Rapinchuk, I. A., On linear representations of Chevalley groups over commutative rings, Proc. Lond. Math. Soc. (3) 102 (5) (2011), 951–983.CrossRefGoogle Scholar
11.Shenfeld, D. K., On semisimple representations of universal lattices, Groups, Geometry, and Dynamics. 4 (1) (2010), 179–193. http://www.ems-ph.org/journals/show_abstract.php?issn=1661-7207&vol=4&iss=1&rank=8CrossRefGoogle Scholar
You have
Access