Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T15:26:26.197Z Has data issue: false hasContentIssue false

Fluid supersaturation and crystallization in porous media

Published online by Cambridge University Press:  01 May 2009

Andrew Putnis
Affiliation:
Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, UK
Manuel Prieto
Affiliation:
Departamento de Geologia, Universidad de Oviedo, 33005 Oviedo, Spain
Lurdes Fernandez-Diaz
Affiliation:
Departamento de Cristalograf‡a y Mineralog‡a, Universidad Complutense de Madrid, 28040 Madrid, Spain

Abstract

The relationship between the supersaturation at the point of crystallization and the rate at which supersaturation increases has been studied from nucleation experiments on barite BaSO4, strontianite SrCO3, witherite BaCO3 and gypsum CaSO4.2H2O. The crystallization experiments have been carried out by the counter-diifusion of cations and anions through a column of porous silica gel transport medium. Nucleation is suppressed in a finely-porous medium resulting in very high values of supersaturation before crystallization from the solution begins. This threshold supersaturation for nucleation depends on the solubility of the salt, the porosity of the medium and the supersaturation rate. Nucleation inhibitors were used to extend the range of supersaturation attainable. In all cases the experimental data fits the general expression: rate of change of supersaturation ∝ (threshold supersaturation)m. These results are compared to previous work from the field of chemical engineering on the relationship between supersaturation, volume and cooling rate in aqueous salt solutions. These experiments have important implications to supersaturation in natural fluids and subsequent crystallization in relation to geological problems including crystallization in low temperature sedimentary environments and fluid-rock ratios in hydrothermal mineral deposits.

Type
Articles
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Basolo, F., & Johnson, R. C., 1964. Coordination Chemistry. The Chemistry of Metal Complexes. New York: W. A. Benjamin.Google Scholar
Berner, R. A., 1975. The role of magnesium in the crystal growth of calcite and aragonite from seawater. Geochimica et Cosmochimica Acta 39, 489504.CrossRefGoogle Scholar
Bigg, E. K., 1953. The supercooling of water. Proceedings of the Physical Society (London) 66B, 688–94.CrossRefGoogle Scholar
Bischoff, J. L., 1968. Kinetics of calcite nucleation: magnesium ion inhibition and ionic strength catalysis. Journal of Geophysical Research 73, 3315–21.CrossRefGoogle Scholar
Bjorlykke, K., 1993. Fluid flow in sedimentary basins. Sedimentary Geology 86, 137–58.CrossRefGoogle Scholar
Broecker, W. S., & Peng, Tsung-Hung., 1982. Tracers in the Sea. New York: Lamont-Doherty Geological Observatory, 690 pp.Google Scholar
Carpenter, M. A., 1981. Omphacite microstructures as time-temperature indicators of blueschist and eclogitefacies metamorphism. Contributions to Mineralogy and Petrology 78, 441–51.CrossRefGoogle Scholar
Carpenter, M. A., & Putnis, A., 1985. Cation order and disorder during crystal growth: some implications for natural mineral assemblages. In Metamorphic Reactions (eds Thompson, A. B. and Rubie, D. C.), pp. 126. Advances in Physical Chemistry, vol. 4. Springer Verlag.CrossRefGoogle Scholar
Černy, P., & Chapman, R., 1984. Paragenesis, chemistry and structural state of adularia from granitic pegmatites. Proceedings, Third NATO Advanced Study Institute on Feldspars, Feldspathoids and their Parageneses, pp. 501–40. Riedel.Google Scholar
Cody, R. D., 1991. Organo-crystalline interactions in evaporite systems: the effects of crystallization inhibition. Journal of Sedimentary Petrology 61, 704–18.Google Scholar
Cox, S. F., Wall, V. J., Etheridge, M. A., & Potter, T. F., 1991. Deformational and metamorphic processes in the formation of mesothermal vein-hosted gold deposits—examples from the Lachlan Fold Belt in central Victoria, Australia. Ore Geology Reviews 6, 391423.CrossRefGoogle Scholar
Crawford, M. L., & Hollister, L. S., 1986. Metamorphic fluids: the evidence from fluid inclusions. In Fluid-Rock Interactions during Metamorphism (eds Wood, B. J. and Walther, J. V.), pp. 135. Advances in Physical Geochemistry, vol. 5. New York: Springer-Verlag.CrossRefGoogle Scholar
Decima, A., Mckenzie, J. A., & Schreiber, B. C., 1988. The origin of ‘evaporative’ limestones: an example from the Messinian of Sicily (Italy). Journal of Sedimentary Petrology 22, 256–72.CrossRefGoogle Scholar
Donaldson, C. H., 1979. An experimental investigation of the delay in nucleation of olivine in mafic magmas. Contributions to Mineralogy and Petrology 69, 2132.CrossRefGoogle Scholar
Folk, R. L., & Land, L. S., 1975. Mg/Ca ratio and salinity: two controls over crystallization of dolomite. Bulletin of the American Association of Petroleum Geologists 59, 60–8.Google Scholar
Goldsmith, J. R., 1959. Some aspects of the geochemistry of carbonates. In Researches in Geochemistry (ed. Abelson, P. H.), pp. 336–58. New York: Wiley.Google Scholar
Halberstadt, E. S., Henisch, H. K., Nickl, J., & White, E. W., 1969. Journal of Colloid and Interface Science 29, 469–71.CrossRefGoogle Scholar
Henisch, H. K., 1989. Crystals in Gels andLiesegang Rings. Cambridge: Cambridge University Press.Google Scholar
Kastner, M., & Siever, R., 1979. Low temperature feldspars in sedimentary rocks. American Journal of Science 279, 435–79.CrossRefGoogle Scholar
Khamskii, E. V., 1969. Crystallization from Solutions. New York: Consultants Bureau, Plenum Publishing Corp.Google Scholar
Kubota, N., Fujisawa, Y., & Tadaki, T., 1988. Effect of volume on the supercooling temperature for primary nucleation of potassium nitrate from aqueous solution. Journal of Crystal Growth 89, 545–52.CrossRefGoogle Scholar
Kubota, N., Karasawa, H., & Kawakami, T., 1978. On estimation of critical supercooling from waiting times measured at constant supercooling. Journal of Chemical Engineering of Japan 11, 290–5.CrossRefGoogle Scholar
Kubota, N., Kawakami, T., & Tadaki, T., 1986. Calculation of supercooling temperature for primary nucleation of potassium nitrate from aqueous solution by the twokind active site model. Journal of Crystal Growth 74, 259–74.CrossRefGoogle Scholar
Land, L. S., 1982. Dolomitization. Education Course Note Series 24. American Association of Petroleum Geology.Google Scholar
Land, L. S., 1984. Diagenesis of Frio sandstones, Texas Gulf Coast: a regional isotopic study. In Clastic Diagenesis (eds MacDonald, D. A. and Surdam, R. C.), pp. 99110. American Association of Petroleum Geologists Memoir no. 37.Google Scholar
Lofgren, G., 1980. Experimental studies on the dynamic crystallization of silicate melts. In Physics of Magmatic Processes (ed. Hargraves, R. B.), pp. 477551. Princeton, NJ: Princeton University Press.Google Scholar
Lofgren, G. E., & Donaldson, C. H., 1975. Phase relations and nonequilibrium crystallization of ocean ridge tholeite from the Nazca plate. (Abstract). EOS Transactions AGU 56, 468.Google Scholar
Lundager, Madsen H. E., 1987. Theory of long induction periods. Journal of Crystal Growth 80, 371–7.CrossRefGoogle Scholar
McKenzie, D., 1989. Some remarks on the movement of small melt fractions in the mantle. Earth and Planetary Science Letters 95, 5372.CrossRefGoogle Scholar
McManus, K. M., & Hanor, J. S., 1993. Diagenetic evidence for massive evaporite dissolution, fluid flow and mass transfer in the Louisiana Gulf Coast. Geology 21, 727–30.2.3.CO;2>CrossRefGoogle Scholar
Melia, T. P., & Moffitt, W. P., 1964. Crystallization from aqueous solution. Journal of Colloid Science 19,433–47.CrossRefGoogle Scholar
Morse, J. W., & Mackenzie, F. T., 1993. Geochemical constraints on CaCO3 transport in subsurface sedimentary environments. Chemical Geology 105, 181–96.CrossRefGoogle Scholar
Mullin, J. W., 1972. Crystallization. 2nd edition. Butterworths.Google Scholar
Mullin, J. W., 1993. Crystallization. 3rd edition. Butterworths.Google Scholar
Muncill, G. E., & Lasaga, A. C., 1988. Crystal-growth kinetics in igneous systems: isothermal H2O-saturated experiments and extension of a growth model to complex silicate melts. American Mineralogist 73, 982–92.Google Scholar
Nielsen, A. E., 1964. Kinetics of Precipitation. Oxford: Pergamon.Google Scholar
Nývlt, J., 1968. Kinetics of nucleation in solutions. Journal of Crystal Growth 3, 377–83.CrossRefGoogle Scholar
Nývlt, J., 1983. Induction period of nucleation and metastable zone width. Collection of Czechoslovak Chemical Communications 48, 1977–83.CrossRefGoogle Scholar
Nývlt, J., 1984. Probable mechanism of the effect of thermal history of aqueous solutions on the metastable zone width. Collection of Czechoslovak Chemical Communications 49, 2045–9.CrossRefGoogle Scholar
Nývlt, J., Söhnel, O., Matuchova, M., & Broul, M., 1985. The Kinetics of Industrial Crystallization. Amsterdam: Elsevier.Google Scholar
Prieto, M., Putnis, A., Arribas, J., & Fernandez-Diaz, L., 1992. Ontogeny of baryte crystals grown in a porous medium. Mineralogical Magazine 56, 587–98.CrossRefGoogle Scholar
Prieto, M., Putnis, A., & Fernandez-Diaz, L., 1990. Factors controlling the kinetics of crystallization: supersaturation evolution in a porous medium. Application to barite crystallization. Geological Magazine 127, 485–95.CrossRefGoogle Scholar
Prieto, M., Putnis, A., & Fernandez-Diaz, L., 1993. Crystallization of solid solutions from aqueous solutions in a porous medium: zoning in (Ba, Sr) SO4. Geological Magazine 130, 289–99.CrossRefGoogle Scholar
Putnis, A., & Holland, T. J. B., 1986. Sector trilling in cordierite and equilibrium overstepping in metamorphism. Contributions to Mineralogy and Petrology 93, 265–72.CrossRefGoogle Scholar
Rashid, M. A., 1985. Geochemistry of Marine Humic Compounds. New York: Springer-Verlag.CrossRefGoogle Scholar
Söhnel, O., 1982. Electrolyte crystal-aqueous solution interfacial tensions from crystallization data. Journal of Crystal Growth 57, 101–8.CrossRefGoogle Scholar
Sunagawa, A., 1987. Morphology of Crystals, Part A. Tokyo: Terra Scientific Publishing Company.Google Scholar
Thurman, E. M., 1985. Organic Geochemistry of Natural Waters. Boston: Martinus Nijhoff.CrossRefGoogle Scholar
van der Leeden, M. C., & Van Rosmalen, G. M., 1984. The role of additives in the agglomeration of barium sulphate. In Industrial Crystallization (eds Jancic, S. J. and de Jong, E. J.), pp. 325–8. New York: Elsevier.Google Scholar
van der Leeden, M. C., & van Rosmalen, G. M., 1987. Aspects of additives in precipitation processes. Desalination 66, 185200.CrossRefGoogle Scholar
Walton, A. G., 1967. The Formation of Precipitates. Interscience Publishers.Google Scholar
Walton, A. G., 1969. Nucleation in liquids and solutions. In Nucleation (ed. Zettlemoyer, A. C.), pp. 225307. New York: Marcel Dekker Inc.Google Scholar
Weijnen, M. P. C., van der Leeden, M. C., & Rosmalen, G. M., 1987. Influence of the molecular structure of phosphanate inhibitors on various aspects of barite and gypsum crystallization. In Geochemistry of the Earth’s Surface and Mineral Formation (eds Rodriguez, R. and Thardy, Y.), pp. 753–76. Madrid: C.S.I.C.Google Scholar
Wood, B. J., & Walther, J. V., 1983. Rates of hydrothermal reactions. Science 222, 413–15CrossRefGoogle ScholarPubMed
Wood, B. J., & Walther, J. V., 1986. Fluid flow during metamorphism and its implications for fluid-rock ratios. In Fluid-Rock Interactions during Metamorphism (eds Wood, B. J. and Walther, J. V.), pp. 89108. Advances in Physical Geochemistry, vol. 5. New York: Springer-Verlag.CrossRefGoogle Scholar
Yardley, B. W. D., 1986. Fluid migration and veining in the Connemara Schists, Ireland. In Fluid-Rock Interactions during Metamorphism (eds Wood, B. J. and Walther, J. V.), pp. 109–31. Advances in Physical Geochemistry, vol. 5. New York: Springer-Verlag.CrossRefGoogle Scholar