Published online by Cambridge University Press: 11 February 2015
We apply the tools of continued fractions to tackle the Diophantine approximation, including the classic Jarník–Besicovitch theorem, localized Jarník–Besicovitch theorem and its several generalizations. As is well known, the classic Jarník–Besicovitch sets, expressed in terms of continued fractions, can be written as $$\begin{eqnarray}\{x\in [0,1):a_{n+1}(x)\geq e^{{\it\tau}(\log |T^{\prime }x|+\cdots +\log |T^{\prime }(T^{n-1}x)|)}~\text{for infinitely many}~n\in \mathbb{N}\},\end{eqnarray}$$
$T$ is the Gauss map and
$a_{n}(x)$ is the
$n$th partial quotient of
$x$. In this paper, we consider the size of the generalized Jarník–Besicovitch set
$$\begin{eqnarray}\{x\in [0,1):a_{n+1}(x)\geq e^{{\it\tau}(x)(f(x)+\cdots +f(T^{n-1}x))}~\text{for infinitely many}~n\in \mathbb{N}\},\end{eqnarray}$$
${\it\tau}(x)$ and
$f(x)$ are positive functions defined on
$[0,1]$.