In this paper, we develop an extremely simple method to establish the sharpened Adams-type inequalities on higher-order Sobolev spaces
$W^{m,\frac {n}{m}}(\mathbb {R}^n)$
in the entire space
$\mathbb {R}^n$
, which can be stated as follows: Given
$\Phi \left ( t\right ) =e^{t}-\underset {j=0}{\overset {n-2}{\sum }} \frac {t^{j}}{j!}$
and the Adams sharp constant
$\beta _{n,m}$
. Then,
$$ \begin{align*}\sup_{\|\nabla^mu\|_{\frac{n}{m}}^{\frac{n}{m}}+\|u\|_{\frac{n}{m}}^{\frac{n}{m}}\leq1}\int_{\mathbb{R}^n}\Phi\Big(\beta_{n,m} (1+\alpha \|u\|_{\frac{n}{m}}^{\frac{n}{m}} )^{\frac{m}{n-m}}|u|^{\frac{n}{n-m}}\Big)dx<\infty, \end{align*} $$
for any
$0<\alpha <1$
. Furthermore, we construct a proper test function sequence to derive the sharpness of the exponent
$\alpha $
of the above Adams inequalities. Namely, we will show that if
$\alpha \ge 1$
, then the above supremum is infinite.
Our argument avoids applying the complicated blow-up analysis often used in the literature to deal with such sharpened inequalities.