Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-28T05:04:38.974Z Has data issue: false hasContentIssue false

Non Abelian Twisted Reidemeister Torsion for Fibered Knots

Published online by Cambridge University Press:  20 November 2018

Jérôme Dubois*
Affiliation:
Section de Mathématiques, Université de Genève CP 64, 2–4 Rue du Lièvre, CH 1211 Genève 4 Switzerland e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this article, we give an explicit formula to compute the non abelian twisted sign-determined Reidemeister torsion of the exterior of a fibered knot in terms of its monodromy. As an application, we give explicit formulae for the non abelian Reidemeister torsion of torus knots and of the figure eight knot.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2006

References

[BZ96] Boyer, S. and Zhang, X., Finite Dehn surgery on knots. J. Amer. Math. Soc. 9(1996), no. 4, 10051050.Google Scholar
[CS83] Culler, M. and Shallen, P., Varieties of group representations and splittings of 3-manifolds. Ann. of Math. 117(1983), no. 1, 109146.Google Scholar
[Dub03a] Dubois, J., Etude d’une forme volume naturelle sur l’espace de représentations du groupe d’un noeud dans SU(2) . C. R. Acad. Sci. Paris, Ser. I 336(2003), no. 8, 641646.Google Scholar
[Dub03b] Dubois, J., Torsion de Reidemeister non abélienne et forme volume sur l’espace des représentations du groupe d’un noeud. Ph.D. thesis, Université Blaise Pascal, Clermont-Ferrand 2, 2003. http://tel.ccsd.cnrs.fr/documents/archives0/00/00/37/82/ Google Scholar
[Dub04] Dubois, J., Non abelian Reidemeister torsion and volume form on the SU(2)-representation space of knot groups. Ann. Inst. Fourier, 55(2005), 16851734.Google Scholar
[Fri88] Fried, D., Counting circles. In: Dynamical Systems, Lecture Notes in Math. 1342, Springer, Berlin, 1988, pp. 196215.Google Scholar
[GM92] Guillou, L. and Marin, A., Notes sur l’invariant de Casson des sphères d’homologie de dimension trois. L’Enseign.Math. 38(1992), no. 3–4, 233290.Google Scholar
[Kla91] Klassen, E., Representations of knot groups in SU(2) . Trans. Amer. Math. Soc. 326(1991), no. 2, 795828.Google Scholar
[Lin01] Lin, X.-S., Representations of knot groups and twisted Alexander polynomials. Acta Math. Sin., English Series 17(2001), no. 3, 361380.Google Scholar
[LST98] Lück, W., Schick, T., and Thielmann, T., Torsion and fibrations. J. Reine Angew. Math. 498(1998), 133.Google Scholar
[Mil66] Milnor, J., Whitehead torsion. Bull. Amer. Math. Soc. 72(1966), 358426.Google Scholar
[Por97] Porti, J., Torsion de Reidemeister pour les variétés hyperboliques. Mem. Amer. Math. Soc. 128(1997), no. 612.Google Scholar
[Ser51] Serre, J.-P., Homologie singulière des espaces fibrés. Ann. of Math. 54(1951), 425505.Google Scholar
[Tur86] Turaev, V., Reidemeister torsion in knot theory. Uspekhi Mat. Nauk 41(1986), 97147.Google Scholar
[Tur01] Turaev, V., Introduction to combinatorial torsions. Birkhäuser Verlag, Basel, 2001.Google Scholar
[Tur02] Turaev, V., Torsions of 3-dimensional manifolds. Progress in Mathematics 208, Birkhäuser Verlag, Basel, 2002.Google Scholar
[Wal78] Waldhausen, F., Algebraic K-theory of generalized free products, Part 1. Ann. of Math. 108(1978), 135204.Google Scholar