Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T07:47:20.385Z Has data issue: false hasContentIssue false

Embedding Uncountably Many Mutually Exclusive Continua into Euclidean Space

Published online by Cambridge University Press:  20 November 2018

B. J. Baker
Affiliation:
Lamar University, Beaumont, Texas, 77710
Michael Laidacker
Affiliation:
Lamar University, Beaumont, Texas, 77710
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Uncountable collections of continua of dimension m embeddable in En are investigated, where the difference between m and n is not restricted to one. Collections of isometric copies of continua equivalent to Menger universal continua and collections of continua analogous to G. S. Young's Tn-sets are the main considerations.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1989

References

1. Bestvina, Mladen, Characterizing k-dimensional universal Menger compacta, Bull. Amer. Math. Soc, 11(1984), 369370.Google Scholar
2. Bothe, H. G., Ein eindimensionales Kompactum im E3, das sich nicht lagetreau in die Mengersche Universalkurve einbetten lafit, Fund. Math., 54 (1964), 251-258.Google Scholar
3. Bothe, H. G., Universalmengen bezuglich der Lage im En, Fund. Math., 56 (1964), 203-212.Google Scholar
4. Kuratowski, K., Topology, Vol. 1, Academic Press, New York, 1966.Google Scholar
5. Moore, R. L., Concerning triods in the plane and the junction points of plane continua, Proc. Nat. Acad. Sci., 14 (1928), 85-88.Google Scholar
6. Stan, M. A.'ko, Approximations of imbeddings of compacta in codimensions greater than two, Soviet Math. Dokl., 12 (1971), 906-909.Google Scholar
7. Young, G. S., Jr., A generalization of Moore's Theorem on simple triods, Bull. Amer. Math. Soc, 50 (1944), 714.Google Scholar