Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-20T10:31:37.415Z Has data issue: false hasContentIssue false

Extreme Measures with Given Moments or Marginals

Published online by Cambridge University Press:  20 November 2018

Valerie Girardin*
Affiliation:
Laboratoire de Statistique Bat. 425, Université Paris-Sud 91405 Orsay Cedex, France e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study the generalized moment problem and the marginal constraints problem. We connect them when the measures have a finite support.

The extreme points of the convex set of solutions with a finite support are determined in both problems.

For the moment problem, they are shown to span in the weak topology the set of all the solutions.

Résumé

Résumé

Nous étudions le problème des moments généralisés et le problème des constraintes de marginales. Nous les relions lorsque les mesures considérées sont à support fini.

Nous déterminons les points extrémaux du convexe des solutions à support discret dans les deux cas.

Nous montrons pour le problème des moments qu'ils engendrent pour la topologie de la convergence étroite toutes les solutions.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1995

References

1. Berg, C., Christensen, J. and Ressel, P., Harmonie analysis on semi-groups Springer-Verlag, 1984.Google Scholar
2. Cassier, G., Problème des moments sur un compact de R” et représentation de polynômes à plusieurs variables, J. Funct. Anal. 58(1984).Google Scholar
3. Dantzig, G., Linear programming and extensions, Princeton, 1963.Google Scholar
4. Fuchssteiner, B. and Lusky, W., Convex cones, North-Holland, 1981.Google Scholar
5. Girardin, V., Problème des moments et entropie. Application en probabilités, Thèse Univ. Paris-Sud, 1991.Google Scholar
6. Karlin, S. and Shapley, L., Geometry of moment spaces, Mem. Amer. Math. Soc. 12(1953).Google Scholar
7. Kemperman, J., Geometry of the moment problem, Proc. Sympos. Appl. Math. 1987.Google Scholar
8. Krein, M. and Nudelman, A., The Markov moment problem and extremal problems, Amer. Math. Soc, 1977.Google Scholar
9. Landau, H., The classical moment problem: Hilbertian proofs, J. Funct. Anal. 38(1980).Google Scholar
10. Landau, H., Maximum entropy and the moment problem, Bull. Amer. Math. Soc. 16(1987).Google Scholar
11. Lauritzen, S., Lectures on contingency tables, Aalborg Univ. Press, 1989.Google Scholar
12. Lindenstrauss, J., A remark on extreme doubly stochastics measures, Amer. Math. Monthly 72(1965).Google Scholar
13. Rogosinsky, W., Moments of nonnegative mass, Proc. Roy. Soc. London Ser. A 245(1958).Google Scholar
14. Shortt, R., Strassen s marginal problem in two or more dimensions, Z. Wahrsch. Verw. Gebiete 64(1983).Google Scholar