Published online by Cambridge University Press: 20 November 2018
The distance from an arbitrary rank-one projection to the set of nilpotent operators, in the space of k × k matrices with the usual operator norm, is shown to be sec(π/(k:+2))/2. This gives improved bounds for the distance between the set of all non-zero projections and the set of nilpotents in the space of k × k matrices. Another result of note is that the shortest distance between the set of non-zero projections and the set of nilpotents in the space of k × k matrices is .