Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-02-05T09:10:27.892Z Has data issue: false hasContentIssue false

Bakry–Émery Curvature Functions on Graphs

Published online by Cambridge University Press:  07 January 2019

David Cushing
Affiliation:
Department of Mathematical Sciences, Durham University, Science Laboratories, South Road, Durham, DH1 3LE, United Kingdom e-mail: [email protected]@durham.ac.uk
Shiping Liu
Affiliation:
School of Mathematical Sciences, University of Science and Technology of China, Hefei, 230026, China e-mail: [email protected]
Norbert Peyerimhoff
Affiliation:
Department of Mathematical Sciences, Durham University, Science Laboratories, South Road, Durham, DH1 3LE, United Kingdom e-mail: [email protected]@durham.ac.uk
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study local properties of the Bakry–Émery curvature function ${\mathcal{K}}_{G,x}:(0,\infty ]\rightarrow \mathbb{R}$ at a vertex $x$ of a graph $G$ systematically. Here ${\mathcal{K}}_{G,x}({\mathcal{N}})$ is defined as the optimal curvature lower bound ${\mathcal{K}}$ in the Bakry–Émery curvature-dimension inequality $CD({\mathcal{K}},{\mathcal{N}})$ that $x$ satisfies. We provide upper and lower bounds for the curvature functions, introduce fundamental concepts like curvature sharpness and $S^{1}$-out regularity, and relate the curvature functions of $G$ with various spectral properties of (weighted) graphs constructed from local structures of $G$. We prove that the curvature functions of the Cartesian product of two graphs $G_{1},G_{2}$ are equal to an abstract product of curvature functions of $G_{1},G_{2}$. We explore the curvature functions of Cayley graphs and many particular (families of) examples. We present various conjectures and construct an infinite increasing family of 6-regular graphs which satisfy $CD(0,\infty )$ but are not Cayley graphs.

Type
Article
Copyright
© Canadian Mathematical Society 2018 

Footnotes

This work was supported by the EPSRC Grant EP/K016687/1 “Topology, Geometry and Laplacians of Simplicial Complexes”.

References

Alon, N. and Roichman, Y., Random Cayley graphs and expanders . Random Structures Algorithms 5(1994), no. 2, 271284. https://doi.org/10.1002/rsa.3240050203.Google Scholar
Bakry, D., Functional inequalities for Markov semigroups. In: Probability measures on groups: recent directions and trends. Tata Inst. Fund. Res., Mumbai, 2006, pp. 91–147.Google Scholar
Bakry, D. and Émery, M., Diffusions hypercontractives . Lecture Notes in Math. 1123, Springer, Berlin, 1985, pp. 177206.. https://doi.org/10.1007/BFb0075847.Google Scholar
Bauer, F., Horn, P., Lin, Y., Lippner, G., Mangoubi, D., and Yau, S.-T., Li-Yau inequality on graphs . J. Differential Geom. 99(2015), no. 3, 359405.Google Scholar
Brouwer, A. E. and Haemers, W. H., Spectra of graphs . Universitext, Springer, New York, 2012. https://doi.org/10.1007/978-1-4614-1939-6.Google Scholar
Chung, F. R. K., Lin, Y., and Yau, S.-T., Harnack inequalities for graphs with non-negative Ricci curvature . J. Math. Anal. Appl. 415(2014), 2532. https://doi.org/10.1016/j.jmaa.2014.01.044.Google Scholar
Chung, F. R. K. and Yau, S.-T., Logarithmic Harnack inequalities . Math. Res. Lett. 3(1996), no. 6, 793812. https://doi.org/10.4310/MRL.1996.v3.n6.a8.Google Scholar
Cushing, D., Kangaslampi, R., Lipläinen, V., Liu, S., and Stagg, G. W., The graph curvature calculator and the curvatures of cubic graphs. arxiv:1712.03033.Google Scholar
Davis, M. W., The geometry and topology of Coxeter groups . London Mathematical Society Monographs Series, 32. Princeton University Press, Princeton, NJ, 2008.Google Scholar
Friedman, J., Murty, R., and Tillich, J.-P., Spectral estimates for abelian Cayley graphs . J. Combin. Theory Ser. B 96(2006), no. 1, 111121. https://doi.org/10.1016/j.jctb.2005.06.012.Google Scholar
Godsil, C. and Royle, G., Algebraic graph theory . Graduate Texts in Mathematics, 207. Springer-Verlag, New York, 2001. https://doi.org/10.1007/978-1-4613-0163-9.Google Scholar
Horn, P., Lin, Y., Liu, Shuang, and Yau, S.-T., Volume doubling, Poincaré inequality and Gaussian heat kernel estimate for nonnegative curvature graphs. J. Reine Angew Math. https://doi.org/10.1515/crelle-2017-0038.Google Scholar
Hua, B. and Lin, Y., Stochastic completeness for graphs with curvature dimension conditions . Adv. Math. 306(2017), 279302. https://doi.org/10.1016/j.aim.2016.10.022.Google Scholar
Hua, B. and Lin, Y., Graphs with large girth and nonnegative curvature dimension condition . Comm. Anal. Geom., to appear. arxiv:1608.07000.Google Scholar
Jost, J. and Liu, S., Ollivier’s Ricci curvature, local clustering and curvature-dimension inequalities on graphs . Discrete Comput. Geom. 51(2014), no. 2, 300322. https://doi.org/10.1007/s00454-013-9558-1.Google Scholar
Klartag, B., Kozma, G., Ralli, P., and Tetali, P., Discrete curvature and abelian groups . Canad. J. Math. 68(2016), 655674. https://doi.org/10.4153/CJM-2015-046-8.Google Scholar
Kolesnikov, A. V. and Milman, E., Brascamp–Lieb type inequalities on weighted Riemannian manifolds with boundary . J. Geom. Anal. 27(2017), no. 2, 16801702. https://doi.org/10.1007/s12220-016-9736-5.Google Scholar
Lakzian, A. and McGuirk, Z., A global Poincaré inequality on graphs via a conical curvature-dimension condition . Anal. Geom. Metr. Spaces 6(2018), 3247. https://doi.org/10.1515/agms- 2018- 0002.Google Scholar
Lin, Y. and Yau, S.-T., Ricci curvature and eigenvalue estimate on locally nite graphs . Math. Res. Lett. 17(2010), no. 2, 343356. https://doi.org/10.4310/MRL.2010.v17.n2.a13.Google Scholar
Liu, S., Münch, F., and Peyerimhoff, N., Curvature and higher order Buser inequalities for the graph connection Laplacian . SIAM J. Discrete Math., to appear. arxiv:1512.08134.Google Scholar
Liu, S., Münch, F., and Peyerimhoff, N., Bakry-Émery curvature and diameter bounds on graphs . Calc. Var. Partial Differential Equations 57(2018), 5767. arxiv:1608.07778 https://doi.org/10.1007/s00526-018-1334-x.Google Scholar
Liu, S. and Peyerimhoff, N., Eigenvalue ratios of nonnegatively curved graphs . Combinatorics, Probability and Computing. https://doi.org/10.1017/s0963548318000214.Google Scholar
Münch, F., Li-Yau inequality on finite graphs via non-linear curvature dimension conditions. arxiv:1412.3340.Google Scholar
Münch, F., Remarks on curvature dimension conditions on graphs . Calc. Var. Partial Differential Equations 56(2017), no. 1. Art. 11, 8 pp. https://doi.org/10.1007/s00526-016-1104-6.Google Scholar
Ohta, S., (K, N)-convexity and the curvature-dimension condition for negative . N. J. Geom. Anal. 26(2016), no. 3, 20672096. https://doi.org/10.1007/s12220-015-9619-1.Google Scholar
Qian, Z., Estimates for weighted volumes and applications . Quart. J. Math. Oxford Ser. (2) 48(1997), no. 190, 235242. https://doi.org/10.1093/qmath/48.2.235.Google Scholar
Schmuckenschläger, M., Curvature of nonlocal Markov generators. In: Convex geometric analysis. Math. Sci. Res. Inst. Publ., 34. Cambridge Univ. Press, Cambridge, 1999, pp. 189–197.Google Scholar