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Bakry–Émery Curvature Functions on
Graphs

David Cushing, Shiping Liu, and Norbert Peyerimhoò

Abstract. We study local properties of the Bakry–Émery curvature functionKG ,x ∶ (0,∞]→ R at a
vertex x of a graphG systematically. HereKG ,x(N) is deûned as the optimal curvature lower bound
K in the Bakry–Émery curvature-dimension inequality CD(K,N) that x satisûes. We provide up-
per and lower bounds for the curvature functions, introduce fundamental concepts like curvature
sharpness and S1-out regularity, and relate the curvature functions of G with various spectral prop-
erties of (weighted) graphs constructed from local structures of G. We prove that the curvature
functions of the Cartesian product of two graphs G1 ,G2 are equal to an abstract product of curva-
ture functions of G1 ,G2 . We explore the curvature functions of Cayley graphs andmany particular
(families of) examples. We present various conjectures and construct an inûnite increasing family
of 6-regular graphs which satisfy CD(0,∞) but are not Cayley graphs.

1 Introduction

In this section we introduce Bakry–Émery curvature and survey the main results of
the paper. A fundamental notion in the smooth setting of Riemannian manifolds is
Ricci curvature. _is notion has been generalized in variousways to themore general
setting of metric spaces. In this article, we consider the discrete setting of graphs
and study the optimal Ricci curvature lower bound K in Bakry–Émery’s curvature-
dimension inequalityCD(K,N) at a vertex x of a graphG as a function of the variable
N ∈ (0,∞]. Let us start by introducing this curvature notion which is based on the
choice of a Laplace operator and which has been studied extensively in recent years
[6, 13–16, 19,22,27].

Let G = (V , E) be a locally ûnite simple graph (that is, no loops and no multiple
edges)with vertex set V and edge set E. For any x , y ∈ V ,wewrite x ∼ y if {x , y} ∈ E.
Let dx ∶= ∑y∶y∼x 1 be the degree of x. We say a graph G is d-regular if dx = d for any
x ∈ V . Let dist∶V ×V → N∪ {0} denote the combinatorial distance function. For any
function f ∶V → R and any vertex x ∈ V , the (non-normalized) Laplacian ∆ is deûned
via

(1.1) ∆ f (x) ∶= ∑
y ,y∼x

( f (y) − f (x)).
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_e notion of a Laplacian can be generalised by intoducing a vertex measure and
edge weights. In this article we will only consider curvature associated with the non-
normalized Laplacian, except for the ûnal Section 10, where we will brie�y provide
some additional information about this curvature notion for general Laplacians.

Deûnition 1.1 (Γ and Γ2 operators) Let G = (V , E) be a locally ûnite simple graph.
For any two functions f , g ∶ V → R, we deûne

2Γ( f , g) ∶= ∆( f g) − f∆g − g∆ f ,
2Γ2( f , g) ∶= ∆Γ( f , g) − Γ( f , ∆g) − Γ(∆ f , g).

We will write Γ( f ) ∶= Γ( f , f ) and Γ2( f , f ) ∶= Γ2( f ), for short.

Deûnition 1.2 (Bakry–Émery curvature) Let G = (V , E) be a locally ûnite simple
graph. Let K ∈ R and N ∈ (0,∞]. We say that a vertex x ∈ V satisûes the curvature-
dimension inequality CD(K,N), if for any f ∶V → R, we have

(1.2) Γ2( f )(x) ≥
1
N

(∆ f (x))2
+KΓ( f )(x).

We call K a lower Ricci curvature bound of x, and N a dimension parameter. _e
graph G = (V , E) satisûes CD(K,N) (globally), if all its vertices satisfy CD(K,N).
At a vertex x ∈ V , letK(G , x ; N) be the largestK such that (1.2) holds for all functions
f at x for a given N. We call KG ,x(N) ∶= K(G , x ; N) the Bakry–Émery curvature
function of x.

_e reader can ûnd various modiûcations of this curvature notion in, e.g., [4, 12,
18, 20, 23, 24]. It is natural to ask about themotivation for this curvature. _e notion
is rooted in Bochner’s formula, a fundamental identity in Riemannian geometry. _e
following remark explains this connection to the smooth setting in more detail.

Remark 1.3 Let (M , ⟨ ⋅ , ⋅ ⟩) be a Riemannian manifold of dimension n with the
Laplacian deûned via ∆ = div ○ grad ≤ 0.
Bochner’s formula states that, for all smooth functions f ∈ C∞(M),
1
2
∆∣ grad f ∣2(x) = ∣Hess f ∣2(x) + ⟨grad∆ f (x), grad f (x)⟩ + Ric(grad f (x)),

where Hess denotes the Hessian and Ric denotes the Ricci tensor. If Ric(v) ≥ Kx ∣v∣2
for all v ∈ TxM and, using the inequality ∣Hess f ∣2(x) ≥ 1

n (∆ f (x))
2, we obtain

1
2
∆∣ grad f ∣2(x) − ⟨grad ∆ f (x), grad f (x)⟩ ≥ 1

n
(∆ f (x))2

+ Kx ∣ grad f (x)∣2 .

_e Γ and Γ2 of Bakry–Émery [3] for two functions f , g ∈ C∞(M) are deûned as
2Γ( f , g) ∶= ∆( f g) − f∆g − g∆ f = ⟨grad f , grad g⟩,
2Γ2( f , g) ∶= ∆Γ( f , g) − Γ( f , ∆g) − Γ(g , ∆ f ).

Noting that Γ2( f , f ) = 1
2∆∣ grad f ∣

2 − ⟨grad∆ f , grad f ⟩ and by using Bochner’s for-
mula, we obtain the inequality Γ2( f , f )(x) ≥ 1

n (∆ f (x))
2 + KxΓ( f , f )(x). In con-

clusion, an n-dimensional Riemannian manifold (M , ⟨ ⋅ , ⋅ ⟩) with Ricci curvature
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bounded below by Kx at x ∈ M satisûes an inequality of the form given in (1.2). _is
suggests using this inequality to deûne, indirectly, a Ricci curvature notion for amet-
ric space via the help of the Laplacian.

Before we give amore detailed discussion of the results in this article, we ûrst pro-
vide a rough overview with references to the sections:
● Section 2: Properties of Γ and Γ2, by formulating curvature via semideûnite pro-

gramming.
● Section 4: General properties of curvature functions.
● Sections 3 and 5: Upper and lower curvature bounds.
● Section 6: Negative curvature at “bottlenecks”.
● Section 7: Curvature of Cartesian products.
● Section 8: Vertex curvature and spectral gaps in the 1-sphere.
● Section 9: Curvature of Cayley graphs and global CD(0,∞) conjectures.
● Section 10: Curvature for graphs with general

1.1 Properties of the Bakry–Émery Curvature Function

In this article, we are particularly interested in the full Bakry–Émery curvature func-
tions KG ,x ∶ (0,∞] → R at all vertices x ∈ V that carry substantially more informa-
tion than just the global CD(K,N) condition. It follows directly from the deûnition
that KG ,x is monotone non-decreasing. In fact, we study further properties of this
curvature function in Section 4 and show that the function KG ,x is concave, contin-
uous, and limN→0 KG ,x(N) = −∞ (Proposition 4.1). Moreover, there exist constants
c1(G , x), c2(G , x), depending on the local structure at x, such that

(1.3) c1(G , x) −
2dx
N

≤KG ,x(N) ≤ c2(G , x) −
2dx
N

.

_e curvature functionKG ,x is fully determined by the topology of the 2-ball B2(x) =
{y ∈ V ∶ dist(x , y) ≤ 2} centered at x ∈ V and Section 3 is concerned with the upper
bound c2(G , x) in (1.3) in terms of this local structure. Introducing, for a vertex y ∈ V ,
the out degree (with respect to the center x)

dx ,+y ∶= ∣{z ∶ z ∼ y, dist(x , z) > dist(x , y)}∣,

the average out degree av+1 (x) of the 1-sphere S1(x) ∶= {y ∈ V ∶ dist(x , y) = 1} is
deûned by av+1 (x) = 1

dx ∑y∈S1(x) d
x ,+
y , and the constant c2(G , ) in (1.3) is given by

(_eorem 3.1 and Deûnition 3.2)

(1.4) c2(G , x) =K0
∞(x) ∶= 3 + dx − av+1 (x)

2
.

Since, in many cases, the curvature function agrees with this upper bound, we intro-
duce the following terminology.

Deûnition 1.4 (Curvature sharpness) Let G = (V , E) be a locally ûnite simple
graph. Let N ∈ (0,∞]. We call a vertex x ∈ V to be N-curvature sharp if KG ,x(N)

agreeswith the upper bound given in (1.3) and (1.4), that is,KG ,x(N) =K0
∞(x)− 2dx

N
.
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We call the graph G to be N-curvature sharp, if every vertex x ∈ V is N-curvature
sharp.

We will show that if x is N-curvature sharp, then it is also N′-curvature for all
smaller values N′ (Proposition 4.6). Moreover, monotonicity and concavity of KG ,x
imply that if KG ,x(N1) = KG ,x(N2) for N1 < N2, then KG ,x(N) is constant for all
values N ≥ N1 (Proposition 4.5).
A natural question is what local information can be extracted from the curvature

function KG ,x . We show that the degree dx can be read oò via (Corollary 4.4)

dx = −
1
2

lim
N→0

NKG ,x(N),

and the average out-degree av+1 (x) can be read oò via (Corollary 5.6)

av+1 = 3 + dx − 2 lim
N→0

(KG ,x(N) +
2dx
N

) .

Proposition 4.1 also provides the lower curvature bound c1(G , x) = KG ,x(∞) in
(1.3). Section 5 provides another lower curvature bound in terms of the upper bound
(1.4) and a correction termgiven by the (non-positive) smallest eigenvalue of a speciûc
matrix P̂N (_eorem 5.5).

1.2 Curvature of S1-out Regular Vertices

Nowwe introduce a certain homogeneity property within the 2-ball of a vertex, called
S1-out regularity. It turns out that this notion is closely linked to the curvature sharp-
ness introduced above.

Deûnition 1.5 (S1-out regularity) We say that a locallyûnite simple graphG is S1-out
regular at x if all vertices in S1(x) have the same out degree.

We have the following surprising characterization: a graph G is S1-out regular at
a vertex x if and only if there exists N ∈ (0,∞] such that x is N-curvature sharp
(Corollary 5.10). _at is, the curvature function KG ,x assumes the upper bound

K0
∞(x) − 2dx/N

for some N ∈ (0,∞] if and only if the local structure around x is homogeneous in
the sense of S1-out regularity. Moreover, when G is S1-out regular at x, there exists
a threshold N0(x) such that x is N-curvature sharp for any N ∈ (0,N0(x)], and
KG ,x(N) ≡KG ,x(N0(x)) for anyN ∈ [N0(x),∞] (_eorem 5.7).

1.3 Curvature and Local Connectedness

A well-known phenomenon in the setting of Riemannian surfaces is that “bottle-
necks” generate regions of negative curvature. A similar phenomenon occurs in the
graph setting (the two vertices at the bottleneck in Figure 1 have strictly negative cur-
vature functions). More generally, the curvature KG ,x(∞) is, with very few excep-
tions, always negative if the punctured 2-ball B̊2(x) = B2(x)−{x} has more than one
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− −

Figure 1: Negative curvature at a “bottleneck”.

connected component (_eorem 6.4). Here B̊2(x) denotes the subgraph contain-
ing all spherical edges of S1(x) and all radial edges between S1(x) and the 2-sphere
S2(x) (but not the radial edges of S2(x), since they have no in�uence on the curva-
ture function at x). Further relations between the curvature and the local structure of
B̊2(x) will be presented in Section 6. In the speciûc case of an S1-out regular vertex
x ∈ V with B̊2(x) having more than one connected component, we derive in Sec-
tion 8 the explicit expressionKG ,x(∞) = (3− dx − av+1 )/2, which is negative as soon
as dx + av+1 > 3 (Corollary 8.4). _is follows from a precise formula for the curva-
ture function KG ,x in terms of the spectral gap of a weighted graph S′′1 (x) of size dx
constructed from B̊2(x) (_eorem 8.1) in the speciûc case of an S1-regular vertex x.

1.4 Curvature of Cartesian Products

In Section 7, we discuss curvature functions of Cartesian products. Let G i = (Vi , E i)

be two locally ûnite simple graphs and let x ∈ V1 , y ∈ V2. _en the curvature function
KG1×G2 ,(x ,y), (x , y) ∈ V1 × V2 is given by

KG1×G2 ,(x ,y)(N) =KG1 ,x(N1) =KG2 ,y(N2),

where N1 ,N2 > 0 are chosen such that N = N1 + N2 and KG1 ,x(N1) = KG2 ,y(N2).
We say thatKG1×G2 ,(x ,y) is the ∗-product ofKG1 ,x andKG2 ,y . _is ∗-product (Deûni-
tion 7.1) of the curvature functions is awell-deûned abstract product and interesting in
its own right. In Figure 2,we illustrate the curvature functions of the complete graphs
K2 andK3 and theirCartesianproductK2×K3. Observe thatKK2(4) =KK3(4) = 3/2.
As illustrated in Figure 3, this tells us that KK2×K3(8) = 3/2.

1.5 Curvature of Specific Graph Families

We calculate curvature functions ofmany particular graph families:
● paths and cycles, star graphs and regular trees, complete graphs, complete bipartite

graphs, and crown graphs in Section 5.3;
● hypercubes and line graphs of bipartite graphs in Section 7.3;
● and Johnson graphs in Example 8.7.

In Section 9, we study curvature functions of Cayley graphs. It is well known that
all abelian Cayley graphs satisfy the CD(0,∞) condition. In _eorem 9.6, we give a
direct relation between the curvature function of the Cayley graph of a Coxeter group
with standard generators (which can be huge; for example, the Cayley graph of E8 is
of size 192 ⋅ 10!) and the maximal eigenvalue of the Laplacian of the corresponding
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Figure 2: Curvature functions ofKK2(N) (dashed),KK3(N) (dashdotted), andKK2×K3(N)

(solid) when N ∈ [0.8, 8].

Coxeter diagram (which, in comparison, is usually very small; in the example E8 of
size 8).

It is not known and a very interesting question whether there exist inûnite ex-
pander families in the class CD(0,∞) (Conjecture 9.11). Such an expander family
cannot consist of abelian Cayley graphs. In Example 9.12 we construct an inûnite
family of increasing 6-regular non-Cayley graphs satisfying CD(0,∞), but it is easy
to see that this class is not a family of expanders.

1.6 Return to Riemannian Manifolds

Readers not interested in the Riemannian manifold case can safely skip this subsec-
tion, which draws a comparison between curvature functions of graphs with that of
weighted Riemannian manifolds.
A weighted Riemannian manifold is a triple (Mn , g , e− f d volg), where (Mn , g) is

an n-dimensional complete Riemannian manifold, d volg is the Riemannian volume
element, and f is a smooth real valued function on Mn . _eN-dimensionalweighted
Ricci tensor of (Mn , g , e− f d volg) is

(1.5) Ric f (N) ∶= Ric+Hess f − d f ⊗ d f
N − n

,
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Figure 3: Curvature functions ofKK2(N) (dashed),KK3(N) (dashdotted), and
KK2×K3(2N) (solid) when N ∈ [0.8, 8].

where Ric is the Ricci curvature tensor of (Mn , g), Hess f is the Hessian of f [3,26].
Using the f -Laplacian ∆ f = ∆g − ∇ f ⋅ ∇, where ∆g is the Laplace–Beltrami oper-
ator on (Mn , g), one can deûne the Bakry–Émery curvature-dimension inequality
CD(K,N) as in Deûnitions 1.1 and 1.2. _en CD(K,N),N ∈ (n,∞] holds if and
only if Ric f (N) ≥ K [2, §3]. Recall n in (1.5) is the dimension of the underlying Rie-
mannianmanifold. When f is not constant, the lower bound ofRic f (N) tends to −∞
asN tends to n. So, in comparison, a graph can be considered as 0-dimensional. _is
is natural in the sense that we are using a diòerence operator to deûne the curvature
functions of a graph.

Recently, the conditions Ric f (N) ≥ K on (Mn , g , e− f d volg), where N < n, have
also been studied [17, 25]. In particular, for N ∈ (−∞, n), CD(K,N) holds if and
only if Ric f (N) ≥K [17, Remark 2.4], [25,_eorem 4.10]. In principle, the curvature
functions of a graph studied in this article can also be deûned on (−∞, 0) ∪ (0,∞].
However, we will restrict ourselves to curvature functions on the interval (0,∞].

2 Bakry–Émery Curvature and Local Γ and Γ2 Matrices

In this section,we view curvature as a solution of a semideûnite programming problem
and derive upper curvature bounds via higher multiplicities of the zero eigenvalue of
certain matrices. We also derive some properties of vertices satisfying the CD(0,N)

condition.
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2.1 Fundamental Notions

Henceforth, we use the standard notation [k] ∶= {1, 2, . . . , k}. Given a vertex x ∈ V ,
the curvature functionKG ,x only depends on the local structure of the graph around
x. We now prepare the notations describing this local structure. We denote by dist
the discrete graph distance. For any r ∈ N, the r-ball centered at x is deûned as

Br(x) ∶= {y ∈ V ∶ dist(x , y) ≤ r},

and the r-sphere centered at x is Sr(x) ∶= {y ∈ V ∶ dist(x , y) = r}. _en we have the
following decomposition of the 2-ball B2(x): B2(x) = {x} ⊔ S1(x) ⊔ S2(x). We call
an edge {y, z} ∈ E a spherical edge (with respect to x) if dist(x , y) = dist(x , z), and a
radial edge if otherwise. For a vertex y ∈ V , we deûne

dx ,+y ∶= ∣{z ∶ z ∼ y, dist(x , z) > dist(x , y)}∣,
dx ,0y ∶= ∣{z ∶ z ∼ y, dist(x , z) = dist(x , y)}∣,
dx ,−y ∶= ∣{z ∶ z ∼ y, dist(x , z) < dist(x , y)}∣.

In the above, the notation ∣ ⋅ ∣ stands for the cardinality of the set. We call dx ,+y , dx ,0y ,
and dx ,−y , respectively, the out degree, spherical degree, and in degree of y with respect
to x. We sometimes write d+y , d0y , d−y for short when the reference vertex x is clear
from the context.
By abuse of notion,we use S1(x) in this article also for the induced subgraph of the

vertices in S1(x) in a graph G; we use B2(x) also for the subgraph of G with vertex
set B2(x) and edge set given by the radial edges connecting {x} and S1(x), the radial
edges between S1(x) and S2(x), and the spherical edges in S1(x). Note that this graph
is not the induced subgraph of B2(x) in G (since the spherical edges in S2(x) are not
included), but this local information is all that is needed for the calculation of the
Bakry–Émery curvature function KG ,x . We denote by B̊2(x) the subgraph of B2(x)
obtained by deleting {x} and all radial edges connecting {x} and S1(x).

Since at a vertex x both Γ( f , g)(x) and Γ2( f , g)(x) are quadratic forms, we can
talk about their local matrices. _e curvature-dimension inequalities can be reformu-
lated as linear matrix inequalities. Recall the following proposition (see [20, Proposi-
tion 3.10]).

Proposition 2.1 ([20]) Let G = (V , E) be a locally ûnite simple graph and let x ∈ V .
_e Bakry–Émery curvature function KG ,x(N) valued at N ∈ (0,∞] is the solution of
the following semideûnite programming,

maximize K

subject to Γ2(x) −
1
N
∆(x)⊺∆(x) ≥ KΓ(x).

In the above, the localmatrices Γ2(x), ∆(x), and Γ(x) arematrices of sizes ∣V ∣×∣V ∣,
1 × ∣V ∣, and ∣V ∣ × ∣V ∣, respectively. But their non-trivial blocks are of relatively small
sizes. For example, the non-trivial block of ∆(x) is the one corresponding to vertices
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B1(x) given by

∆(x) = (−dx 1 ⋅ ⋅ ⋅ 1) .

It is of size 1 × ∣B1(x)∣ = 1 × (dx + 1). _e non-trivial blocks of Γ(x) and Γ2(x) are
of sizes ∣B2(x)∣× ∣B2(x)∣ and ∣B1(x)∣× ∣B1(x)∣, respectively. In the remaining part of
this paper, we will reserve the notations Γ2(x), ∆(x), and Γ(x) for their non-trivial
block. Whenever we write linear combinations of them, we pad matrices of smaller
sizes with 0 entries.

We will discuss the local matrices Γ(x) and Γ2(x) in more detail in the following
subsections.

2.2 Local Γ Matrix and Its Basic Properties

We check bydeûnition that Γ(x) is a ∣B1(x)∣×∣B1(x)∣matrix corresponding to vertices
in B1(x) given by

(2.1) 2Γ(x) =
⎛
⎜
⎜
⎜
⎝

dx −1 ⋅ ⋅ ⋅ −1
−1 1 ⋅ ⋅ ⋅ 0
⋮ ⋮ ⋱ ⋮

−1 0 ⋅ ⋅ ⋅ 1

⎞
⎟
⎟
⎟
⎠

.

_e following property is a direct observation. Let us denote by 1dx+1 ∶= (1, 1, . . . , 1)⊺
and by 1⊥dx+1 the orthogonal complement of the subspace spanned by 1dx+1 in Rdx+1.
For convenience, we will o�en drop the subindex when no confusion is possible.

Proposition 2.2 Let v ∈ Rdx+1. _en Γ(x)v = 0 if and only if v = a1 for some
constant a ∈ R. Moreover, the smallest eigenvalue λmin(2Γ(x)∣1⊥) of 2Γ(x) restricted
to the subspace 1⊥ satisûes

(2.2) λmin(2Γ(x)∣1⊥) ≥ 1.

_e equality holds in (2.2) when dx > 1.

Proof By (2.1), 2Γ(x) is diagonal dominant and 2Γ(x)1 = 0.
For any v ∶= (v0 , v1 , . . . , vdx )⊺ ∈ 1⊥, we have v0 = −∑

dx
i=1 v i , and therefore,

v⊺(2Γ(x))v = (dx + 1)v2
0 +

dx
∑
i=0

v2
i ≥ ∣v∣2 ,

where ∣v∣ is the norm of v. _is shows λmin(2Γ(x)∣1⊥) ≥ 1.
When dx > 1, there exists v ∶= (v0 , v1 , . . . , vdx )⊺ ∈ 1⊥ with v0 = 0. We can check

that 2Γ(x)v = v. Hence in this case λmin(2Γ(x)∣1⊥) = 1.
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2.3 Local Γ2 Matrix and Its Basic Properties

_ematrix Γ2(x) is of size ∣B2(x)∣× ∣B2(x)∣ with the following structure [20, Propo-
sition 3.12]

4Γ2(x) =
⎛
⎜
⎝

(4Γ2(x))x ,x (4Γ2(x))x ,S1(x) (4Γ2(x))x ,S2(x)
(4Γ2(x))S1(x),x (4Γ2(x))S1(x),S1(x) (4Γ2(x))S1(x),S2(x)
(4Γ2(x))S2(x),x (4Γ2(x))S2(x),S1(x) (4Γ2(x))S2(x),S2(x)

⎞
⎟
⎠
.

_e sub-indices indicate the vertices to which each submatrix corresponds. We will
omit the dependence on x in the above expressions for simplicity. Whenwe exchange
the order of the sub-indices, we mean the transpose of the original submatrix. For
example, we have (4Γ2)S1 ,x ∶= ((4Γ2)x ,S1)

⊺.
Denote the vertices in S1(x) by {y1 , . . . , ydx}. _en we have

(2.3) (4Γ2)x ,x = 3dx + d2
x , (4Γ2)x ,S1 = (−3 − dx − d+y1 ⋅ ⋅ ⋅ −3 − dx − d+ydx ) ,

and
(2.4)

(4Γ2)S1 ,S1 =

⎛
⎜
⎜
⎜
⎝

5 − dx + 3d+y1 + 4d0y1 2 − 4wy1 y2 ⋅ ⋅ ⋅ 2 − 4wy1 ydx
2 − 4wy1 y2 5 − dx + 3d+y2 + 4d0y2 ⋅ ⋅ ⋅ 2 − 4wy2 ydx

⋮ ⋮ ⋱ ⋮

2 − 4wy1 ydx 2 − 4wy2 ydx ⋅ ⋅ ⋅ 5 − dx + 3d+ydx + 4d0ydx

⎞
⎟
⎟
⎟
⎠

,

where we use the notation that for any two vertices x , y ∈ V ,

(2.5) wx y =

⎧⎪⎪
⎨
⎪⎪⎩

1 if x ∼ y,
0 otherwise.

Denote the vertices in S2(x) by {z1 , . . . , z∣S2(x)∣}. _en we have

(4Γ2)x ,S2 = (d−z1 d−z2 ⋅ ⋅ ⋅ d−z∣S2(x)∣) ,(2.6)

(4Γ2)S1 ,S2 =
⎛
⎜
⎝

−2wy1z1 −2wy1z2 ⋅ ⋅ ⋅ −2wy1z∣S2(x)∣
⋮ ⋮ ⋱ ⋮

−2wydx z1 −2wydx z2 ⋅ ⋅ ⋅ −2wydx z∣S2(x)∣

⎞
⎟
⎠
,(2.7)

(4Γ2)S2 ,S2 =

⎛
⎜
⎜
⎜
⎝

d−z1 0 ⋅ ⋅ ⋅ 0
0 d−z2 ⋅ ⋅ ⋅ 0
⋮ ⋮ ⋱ ⋮

0 0 ⋅ ⋅ ⋅ d−z∣S2(x)∣

⎞
⎟
⎟
⎟
⎠

.(2.8)

Note that each diagonal entry of (4Γ2)S2 ,S2 is positive.
Let A(G) be the adjacency matrix of the graph G. _en we see

(4Γ2)S1 ,S2 = −2 ⋅ A(G)S1 ,S2 .
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In fact, we can decompose thematrix 4Γ2 as follows:

4Γ2 =
⎛
⎜
⎝

0 0 0
0 −4 ∆∣S1(x) 0
0 0 0

⎞
⎟
⎠
+
⎛
⎜
⎝

0 0 0
0

−2 ∆∣B̊2(x)0

⎞
⎟
⎠

+

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

3dx + d2
x −3 − dx − d+y1 ⋅ ⋅ ⋅ −3 − dx − d+ydx d−z1 ⋅ ⋅ ⋅ d−z∣S2 ∣

−3 − dx − d+y1 5 − dx + d+y1 ⋅ ⋅ ⋅ 2 0 ⋅ ⋅ ⋅ 0
⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮

−3 − dx − d+ydx 2 . . . 5 − dx + d+ydx 0 ⋅ ⋅ ⋅ 0
d−z1 0 ⋅ ⋅ ⋅ 0 −d−z1 ⋅ ⋅ ⋅ 0
⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮

d−z∣S2 ∣ 0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ −d−z∣S2 ∣

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

In the above, ∆∣S1(x) and ∆∣B̊2(x) are the non-normalized Laplacian of the subgraphs
S1(x) and B̊2(x), respectively.

_e following proposition can be checked directly.

Proposition 2.3 For the constant vector 1 ∈ R∣B2(x)∣, we have Γ2(x)1 = 0.

2.4 Multiplicity of Zero Eigenvalue of Γ2(x) and Curvature

By Proposition 2.3, themultiplicity of zero eigenvalue ofmatrix Γ2(x) is at least one.
In this subsection,we discuss an interesting relation between thismultiplicity and the
curvature at x.

_eorem 2.4 LetG = (V , E) be a locally ûnite simple graph and x ∈ V be a vertex. If
themultiplicity of the zero eigenvalue of Γ2(x) is at least 2, then we haveKG ,x(∞) ≤ 0.

Let us ûrst show the following lemma.

Lemma 2.5 Let v = (
v1
v2 ) with v1 ∈ R∣B1(x)∣ and v2 ∈ R∣S2(x)∣ a non-constant vector

such that Γ2(x)v = 0. _en we have Γ(x)v1 /= 0.

Proof We prove the lemma by contradiction. Assume that Γ(x)v1 = 0. By Proposi-
tion 2.2, we have

(2.9) v1 = a1∣B1(x)∣ , for some a ∈ R.

Let us denote

w ∶= a1∣S2(x)∣ − v2 = (
0

a1∣B1(x)∣ − v2
) .

_en by Proposition 2.3, we have Γ2(x)w = 0.
Since the submatrix (Γ2)S2 ,S2 is invertible (recall (2.8)), we conclude that

(2.10) v2 = a1∣B1(x)∣ .

_en (2.9) and (2.10) imply that v2 is a constant vector, which is a contradiction.
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Proof of_eorem 2.4 We argue by contradiction. Suppose that K ∶=KG ,x(∞) > 0.
_en we have

(2.11) Γ2(x) − KΓ(x) ≥ 0.

By assumption, there exists a non-constant vector v = (
v1
v2 ) such that

(2.12) vTΓ2(x)v = 0.

Applying Lemma 2.5, we obtain from (2.11) that vTΓ2(x)v ≥ KvT
1 Γ(x)v1 > 0, which is

a contradiction to (2.12).

For anyN ∈ (0,∞] and K ∈ R, we denote

MK ,N(x) ∶= Γ2(x) −
1
N
∆(x)⊺∆(x) − KΓ(x).

Observe that MK ,N(x)1 = 0, and its (S2 , S2)-block, which equals (Γ2)S2 ,S2 , is invert-
ible. _erefore, from the above proofs it is not hard to see that an analogous result of
_eorem 2.4 also holds for MK ,N.

_eorem 2.6 Let G = (V , E) be a locally ûnite simple graph and x ∈ V be a vertex.
LetN ∈ (0,∞] and K ∈ R. If themultiplicity of the zero eigenvalue of thematrix MK ,N
is at least 2, then we haveKG ,x(N) ≤ K.

_e following result is an immediate consequence of_eorem 2.6.

Corollary 2.7 Let G = (V , E) be a locally ûnite simple graph and x ∈ V be a vertex.
Let N ∈ (0,∞] and K ∈ R. _en the following are equivalent.
(i) KG ,x(N) = K.
(ii) _ematrix MK ,N(x) ≥ 0 and themultiplicity of its zero eigenvalue is at least 2.

Proof (ii)⇒ (i): Since MK ,N(x) ≥ 0, we have KG ,x(N) ≥ K. By _eorem 2.6, (ii)
implies KN(G , x) ≤ K. _erefore, we obtain KN(G , x) = K.

(i) ⇒ (ii): (i) implies MK ,N ≥ 0 immediately. Assume that the zero eigenvalue
of MK ,N(x) has multiplicity 1. _en the smallest eigenvalue λmin(MK ,N(x)∣1⊥) of
MK ,N restricted to the space 1⊥ is positive. Let λmax(Γ(x)) be themaximal eigenvalue
of Γ(x). We observe that

MK ,N(x) − єΓ(x) ≥ 0, for any 0 < є < λmax(Γ(x))
λmin(MK ,N(x)∣1⊥)

,

which is a contradiction to (i).

2.5 Vertices Satisfying CD(0,N)

In this subsection,we discuss immediate properties of a vertex x satisfyingCD(0,N),
by considering two particular principal minors of thematrix M0,N(x): the determi-
nants of (x , x)-blocks and (B1(x), B1(x))-blocks.
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Proposition 2.8 Let G = (V , E) be a locally ûnite simple graph and x ∈ V . If x
satisûes CD(0,N), then we have

(2.13) 4dx
dx + 3

≤ N.

Proof By Corollary 2.7, we have 4M0,N(x) ≥ 0. From Sylvester’s criterion we have

(4M0,N(x))x ,x = 3dx + d2
x −

4d2
x

N
≥ 0.

Rearranging, we thus obtain (2.13).

Proposition 2.8 has interesting consequences.

Corollary 2.9 Let G = (V , E) be a locally ûnite simple graph and let x ∈ V . _en
KG ,x(N) < 0 when N < 1.

Proof Let N < 1. Assume that KG ,x(N) ≥ 0. _en by Proposition 2.8, we have
4dx < 3dx + 1. Hence dx < 1, which is impossible.

Remark 2.10 Corollary 2.9 can also be shown by a Lichnerowicz type estimate
[20, Corollary 6.2].

Corollary 2.11 Let G = (V , E) be a locally ûnite simple graph satisfying CD(0,N).
Let dmax denote themaximum degree taken over all vertices.
(i) IfN ∈ (0, 4), then dmax ≤

3N
4−N .

(ii) IfN = 4, then dmax can be arbitrarily large.

Proof _e case N ∈ (0, 4) is obtained directly from Proposition 2.8. For N = 4,
consider the complete graphs Kn on n vertices that satisfy CD(0, 4). See [15, Proposi-
tion 3] or Example 5.17.

Proposition 2.12 Let G = (V , E) be a locally ûnite simple graph. For a vertex x ∈ V ,
let us denote c1(x) ∶= det(Γ2(x)B1 ,B1) and c2(x) = ∆(x) adj(Γ2(x)B1 ,B1)∆(x)⊺,where
adj( ⋅ ) stands for the adjugatematrix. If x satisûes CD(0,N), then we have

c1(x) ≥
c2(x)
N

.

Proof By assumption, we have M0,N(x) ≥ 0. From Sylvester’s criterion we have

det(Γ2(x)B1 ,B1 −
1
N
∆(x)⊺∆(x)) ≥ 0.

Applying theMatrix Determinant Lemma, we obtain

det(Γ2(x)B1 ,B1) −
1
N
∆(x) adj(Γ2(x)B1 ,B1)∆(x)

⊺
≥ 0.

_is completes the proof.
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Example 2.13 (K2,6) Consider the complete bipartite graph K2,6. Let x be a vertex
with degree 2. _en we can check

Γ2(x)B1 ,B1 =
1
2

⎛
⎜
⎝

5 −5 −5
−5 9 1
−5 1 9

⎞
⎟
⎠

and ∆(x) = (−2 1 1).

Hence,we have c1(x) = 0 and c2(x) = 20. By Proposition 2.12,we know, for any ûnite
N > 0, that x does not satisfy CD(0,N). However, we will show that the graph K2,6
satisûes CD(0,∞).

In Section 3, we will derive an interesting curvature upper bound by considering
the ({x} ⊔ S2(x), {x} ⊔ S2(x))-minor of MK ,N(x).

3 An Upper Curvature Bound

In this section, we derive an upper bound on the Bakry–Émery curvature function
KG ,x in terms of the local topological structure around x (_eorem 3.1). Let us denote
the average degree and average out-degree of S1(x) by

av1(x) ∶=
1
dx
∑

y∈S1(x)
dy and av+1 (x) ∶=

1
dx
∑

y∈S1(x)
d+y .

We write d0y = #∆(x , y) alternatively to emphasize its geometric meaning: it is the
number of triangles (3-cycles) including the edge {x , y}. We have

∑
y∈S1(x)

d0y = ∑
y∈S1(x)

#∆(x , y) =∶ 2#∆(x),

where #∆(x) is the number of triangles including the vertex x.

_eorem 3.1 Let G = (V , E) be a locally ûnite simple graph and let x ∈ V . For
N ∈ (0,∞], we have

(3.1) KG ,x(N) ≤ 2 + dx − av1(x)
2

+
#∆(x)
dx

−
2dx
N

.

Proof Let K ∶=KG ,x(N). _en thematrix

4MK,N(x) = 4(Γ2(x) −
1
N
∆(x)⊺∆(x) −KΓ(x)) ≥ 0.

Let M0 be the submatrix corresponding to the vertices

{x} ⊔ S2(x) = {x , z1 , . . . , z∣S2(x)∣}.

_ematrix M0 has the form

M0 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

d2
x + 3dx − 2Kdx − 4d2

x/N d−z1 d−z2 ⋅ ⋅ ⋅ d−z∣S2(x)∣
d−z1 d−z1 0 ⋅ ⋅ ⋅ 0
d−z2 0 d−z2 ⋅ ⋅ ⋅ 0
⋮ ⋮ ⋮ ⋱ ⋮

d−z∣S2(x)∣ 0 0 ⋅ ⋅ ⋅ d−z∣S2(x)∣

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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We have, by Sylvester’s criterion, det(M0) ≥ 0. _us

(3.2) d2
x + 3dx − 2Kdx −

4d2
x

N
≥ ∑

z∈S2(x)
d−z = ∑

y∈S1(x)
d+y = ∑

y∈S1(x)
dy − dx − 2#∆(x).

Rearranging gives (3.1) as required.

Deûnition 3.2 (_e constant K0
∞(x)) Let G = (V , E) be a locally ûnite simple

graph. For any vertex x ∈ V , we deûne

K0
∞(x) ∶= 2 + dx − av1(x)

2
+

1
2dx

∑
y∈S1(x)

#∆(x , y).

By the calculations in (3.2), we can reformulateK0
∞(x) as follows:

(3.3) K0
∞(x) = 3 + dx − av+1 (x)

2
.

In terms of the above deûnition, we can rewrite (3.1) as KG ,x(N) ≤K0
∞(x) − 2dx

N
.

Corollary 3.3 Let G = (V , E) be a d-regular graph and let x ∈ V . _en

(3.4) KG ,x(∞) ≤ 2 + #∆(x)
d

= 2 + 1
2d ∑

y∈S1(x)
#∆(x , y).

Proof _is follows immediately from _eorem 3.1, a�er noting that in a regular
graph we have dx = av1(x).

Remark 3.4 We remark that on a d-regular graph,Klartag,Kozma, Ralli, andTetali
[16, _eorem 1.2] derived an upper bound of KG ,x(∞), via a diòerent calculating
method. Namely, they proved K∞(G , x) ≤ 2 + 1

2 maxy∈S1(x) #∆(x , y). We comment
that their proof can also produce the stronger estimate (3.4).

_eorem 3.1 provides stronger estimates than Proposition 2.8. For example, we
have the following one for regular graphs.

Corollary 3.5 Let G = (V , E) be a d-regular graph satisfying CD(0,N). _en

d ≤
N +

√
N2 + 2N#∆(x)

2
, for every x ∈ V .

In particular, if G is triangle free, then d ≤ N.

_eorem 3.1 also includes cases where the curvature has to be negative. For exam-
ple, we have the following straightforward consequence.

Corollary 3.6 Let G = (V , E) be a triangle free graph and let x ∈ V . Suppose that
av1(x) > 4 + dx . _en we haveKG ,x(∞) < 0.

_e local structures with negative curvature will be explored further in Section 6.

103

https://doi.org/10.4153/CJM-2018-015-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2018-015-4


D. Cushing, S. Liu, and N. Peyerimhoò

4 Fundamental Properties of Curvature Functions

In this section, we discuss fundamental properties of the curvature function KG ,x .

Proposition 4.1 Let G = (V , E) be a locally ûnite simple graph and x ∈ V . _en the
curvature function KG ,x ∶ (0,∞]→ R has the following properties.
(i) KG ,x is monotone non-decreasing.
(ii) KG ,x is continuous.
(iii) For anyN ∈ (0,∞], we have

(4.1) KG ,x(∞) −
2dx
N

≤KG ,x(N) ≤K0
∞(x) − 2dx

N
.

In particular, limN→0KG ,x(N) = −∞.
(iv) KG ,x is a concave function.1

Remark 4.2 Note that for a given vertex, KG ,x(∞) and K0
∞(x) are both ûxed

constants. Hence, (4.1) describes a rough shape of the graph of the curvature function
KG ,x .

We ûrst prove the following lemma.

Lemma 4.3 For any 0 < N1 ≤ N2 ≤∞, we have

(4.2) KG ,x(N2) ≤KG ,x(N1) + 2dx(
1
N1

−
1
N2

) .

Proof By deûnition, we have

Γ2(x) ≥
1
N2

∆(x)⊺∆(x) +KG ,x(N2)Γ(x)

=
1
N1
∆(x)⊺∆(x) − (

1
N1

−
1
N2

)∆(x)⊺∆(x) +KG ,x(N2)Γ(x).

Observe that

(4.3) dx ⋅ 2Γ − ∆⊺∆ =

⎛
⎜
⎜
⎜
⎝

0 0 ⋅ ⋅ ⋅ 0
0

dx Idx − Jdx⋮

0

⎞
⎟
⎟
⎟
⎠

,

where Idx is the dx × dx identity matrix and Jdx is the dx × dx matrix whose entries
all equal 1. Since thematrix in (4.3) is diagonal dominant, we have

(4.4) ∆(x)⊺∆(x) ≤ 2dxΓ(x).
Inserting (4.4), we continue the calculation to obtain

Γ2(x) ≥
1
N1
∆(x)⊺∆(x) + (KG ,x(N2) − 2dx(

1
N1

−
1
N2

))Γ(x).

_is implies (4.2).
1We are grateful to Bobo Hua and also to Jim Portegies, who independently raised the concavity

question for this curvature function.
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Proof of Proposition 4.1 (i) _emonotonicity is clear from deûnition.
(ii) By (i) and Lemma 4.3, we have, for any 0 < N1 ≤ N ≤∞,

KG ,x(N1) ≤KG ,x(N) ≤KG ,x(N1) + 2dx(
1
N1

−
1
N

) .

_is shows KG ,x ∶ (0,∞]→ R is a continuous function.
(iii) _e upper bound in (4.1) is from _eorem 3.1 and the lower bound is from

Lemma 4.3 by taking N1 = N andN2 =∞.
(iv) LetN1 < N2 andN = αN1 + (1− α)N2 for some α ∈ [0, 1]. LetK j =KG ,x(N j)

for j ∈ {1, 2}. We need to show that

(4.5) KG ,x(N) ≥ αK1 + (1 − α)K2 .

It follows from (1.2) that we have for any f ∶V → R, j ∈ {1, 2},

N jΓ2( f )(x) −N jK jΓ( f )(x) ≥ (∆ f (x))2 .

_is implies that

(4.6) NΓ2( f )(x) − (αN1K1 + (1 − α)N2K2)Γ( f )(x) ≥ (∆ f (x))2 .

Recall from themonotonicity ofKG ,x that K1 ≤K2 and, therefore,

α(1 − α)(N2 −N1)(K2 −K1) ≥ 0.

_is transforms straighforwardly into

αN1K1 + (1 − α)N2K2 ≥ (αN1 + (1 − α)N2)(αK1 + (1 − α)K2)

= N(αK1 + (1 − α)K2).

Plugging this into (4.6), using Γ( f )(x) = 1
2 ∑y ,y∼x( f (y)− f (x))2 ≥ 0, and reversing

the original calculations, we end up with

Γ2( f )(x) ≥
1
N

(∆ f (x))2
+ (αK1 + (1 − α)K2) Γ( f )(x).

_is shows (4.5), ûnishing the proof.

Proposition 4.1 (iii) implies that we can read the degree of x from its curvature
function.

Corollary 4.4 Let G = (V , E) be a locally ûnite simple graph andKG ,x ∶ (0,∞]→ R
be the curvature function of x ∈ V . _en dx = − 1

2 limN→0NKG ,x(N).

_e following proposition states that, for any curvature function KG ,x , there al-
ways exists a thresholdN0(x) ∈ (0,∞] such thatKG ,x is strictlymonotone increasing
on (0,N0(x)], and is constant on [N0(x),∞].

Proposition 4.5 Let G = (V , E) be a locally ûnite simple graph and x ∈ V . If there
exist N1 < N2 such that KG ,x(N1) =KG ,x(N2), then we have

KG ,x(N) =KG ,x(N1), ∀N ∈ [N1 ,∞].
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Proof First, by monotonicity we know KG ,x(N) is constant on [N1 ,N2]. Let us
denote this constant by K ∶=KG ,x(N1). Again, bymonotonicity we haveKG ,x(N) ≥

K for all N ≥ N2. But the existence of N > N2 with KG ,x(N) > K would contradict
the concavity ofKG ,x (with respect to the three points N1 < N2 < N).

Lemma 4.3 implies the following property on curvature sharpness.

Proposition 4.6 Let G = (V , E) be a locally ûnite graph and x ∈ V . If x is N-cur-
vature sharp, then x is N′-curvature sharp for anyN′ ∈ (0,N].

Proof If x is N-curvature sharp, thenKG ,x(N) =K0
∞(x) − 2dx/N. By Lemma 4.3,

we obtain KG ,x(N
′) ≥ K0

∞(x) − 2dx
N′ for anyN′ ∈ (0,N]. Recalling the upper bound

in _eorem 3.1, we see that the above equality holds.

In particular, an∞-curvature sharp vertex isN-curvature sharp for any dimension
N ∈ (0,∞].

5 Reformulation of the Semidefinite Programming Problem and a
Lower Curvature Bound

In this section, we derive a reformulation (see_eorem 5.4) of the semideûnite pro-
gramming problem in Proposition 2.1. _is leads to a lower bound of the curvature
functionKG ,x in terms of the upper boundK0

∞(x)− 2dx
N
and theminimal eigenvalue

of a local matrix P̂N(x), which re�ects the topological structure of the neighbour-
hood around x. When G is S1-out regular at x, our lower bound estimate provides a
precise formula for KG ,x .

5.1 Main Results Without Proofs

We refer the readers to the next subsection for the proofs of themain results presented
here.

Deûnition 5.1 (Matrices P∞ and P̂∞) Let G = (V , E) be a locally ûnite simple
graph and let x ∈ V . _en P̂∞(x) is a (dx + 1) × (dx + 1) matrix deûned as

P̂∞(x) ∶=

⎛
⎜
⎜
⎜
⎜
⎝

0 d+y1 − av
+
1 (x) ⋅ ⋅ ⋅ d+ydx − av

+
1 (x)

d+y1 − av
+
1 (x)

P∞(x)⋮

d+ydx − av
+
1 (x)

⎞
⎟
⎟
⎟
⎟
⎠

,

where P∞(x) is a dx × dx matrix corresponding to the vertices in S1(x) given as
follows. For any i , j ∈ [dx], i /= j, we have

(5.1) (P∞(x))i j ∶= 2 − 4wy i y j − 4 ∑
z∈S2(x)

wy i zwz y j

d−z
,

with wuv as deûned in (2.5) and, for any i ∈ [dx],
(5.2) (P∞(x))i i ∶= − ∑

j∈[dx], j/=i
(P∞)i j − (d+y i − av

+
1 (x)).
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Remark 5.2 Note that the entry (P∞(x))i j in (5.1) is determined by the number of
1-paths between y i and y j , i.e., wy i y j , which is either 0 or 1, and a weighted counting
of the 2-paths between y i and y j via vertices in S2(x). _e entry (P∞(x))i i in (5.2)
is deûned such that P̂∞(x)1 = 0. By a direct calculation, one can reformulate (5.2) as

(P∞(x))i i = −2(dx − 1) + 3d+y i + av
+
1 (x) + 4d0y i − 4 ∑

z∈S2(x)

w2
y i z

d−z
.

Deûnition 5.3 (Matrices P̂N) Let G = (V , E) be a locally ûnite simple graph and
let x ∈ V . For N ∈ (0,∞], we deûne

(5.3) P̂N(x) ∶= P̂∞(x) + 4
N

⎛
⎜
⎜
⎜
⎝

0 0 ⋅ ⋅ ⋅ 0
0

dx Idx − Jdx⋮

0

⎞
⎟
⎟
⎟
⎠

.

By deûnition, we have P̂N1 = 0.
Now, we are ready to state our main results.

_eorem 5.4 Let G = (V , E) be a locally ûnite simple graph and let x ∈ V . _en for
any N ∈ (0,∞], KG ,x(N) is the solution of the following semideûnite programming
problem:

maximize K0
∞(x) − 2dx

N
−

λ
2

subject to P̂N(x) ≥ −λ ⋅ 2Γ(x).
Moreover, the following are equivalent.
(i) KG ,x(N) =K0

∞(x) − 2dx
N

− λ
2 .

(ii) _ematrix P̂N(x) + λ ⋅ 2Γ(x) is positive semideûnite and has zero eigenvalue of
multiplicity at least 2.

_eorem 5.4 can be considered as a new version of Proposition 2.1 and Corol-
lary 2.7, in terms of thematrix P̂N(x) + λ ⋅ 2Γ(x) instead of 4MK ,N. Note the latter
matrix has a larger size.
As a consequence of_eorem 5.4, we have the following lower bound of the cur-

vature function.

_eorem 5.5 Let G = (V , E) be a locally ûnite simple graph and let x ∈ V . _en
for any N ∈ (0,∞], we have KG ,x(N) ≥ K0

∞(x) − 2dx
N

+ 1
2 λmin(P̂N(x)). _e above

estimate is sharp if and only if the zero eigenvalue of thematrix

P̂N(x) − λmin(P̂N(x)) ⋅ 2Γ(x)
has multiplicity at least 2.

Recall from Corollary 4.4 thatwe can read the degree dx from the curvature func-
tion KG ,x . With the help of_eorem 5.5, we can further read the average out degree
av+1 (x).
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Corollary 5.6 Let G = (V , E) be a locally ûnite simple graph andKG ,x ∶ (0,∞]→ R
be the curvature function of x ∈ V . _en av+1 (x) = 3+dx −2 limN→0(KG ,x(N)+ 2dx

N
) .

Proof Combining the upper bound in_eorem 3.1 and the lower bound in_eorem
5.5, we obtain

2K0
∞(x) + λmin(P̂N(x)) ≤ 2(KG ,x(N) +

2dx
N

) ≤ 2K0
∞(x) = 3 + dx − av+1 (x).

_erefore, it remains to prove limN→0 λmin(P̂N(x)) = 0. Since P̂N(x)1 = 0, we only
need to show for any v = (v0 , v1 , . . . , vdx )⊺ ∈ 1⊥, limN→0 v⊺P̂N(x)v ≥ 0.
By (5.3), we calculate

v⊺P̂N(x)v =2v0
d

∑
i=1

(d+y i − av
+
1 (x))v i + (v1 ⋅ ⋅ ⋅ vdx )P∞

⎛
⎜
⎝

v1
⋮

vdx

⎞
⎟
⎠

+
4
N

[dx
dx
∑
i=1

v2
i − (

dx
∑
i=1

v i)
2
] .

If v = (−d , 1, . . . , 1)⊺, we can check from above that v⊺P̂N(x)v = 0. Otherwise, we
have dx ∑dxi=1 v

2
i − (∑

dx
i=1 v i)

2
> 0, and therefore limN→0 v⊺P̂N(x)v =∞.

When G is S1-out regular at x, we obtain from _eorem 5.5 a precise formula for
calculating the curvature function KG ,x . Note that in this case we have P∞(x)1 = 0
and, therefore, λmin(P∞(x)) ≤ 0.

_eorem 5.7 Let G = (V , E) be a locally ûnite simple graph and let x ∈ V . Assume
that G is S1-out regular at x, i.e., d+y i = av

+
1 (x), for any y i ∈ S1(x). _en we have for

anyN ∈ (0,∞]

(5.4) KG ,x(N) =K0
∞(x) − 2dx

N
+

1
2
λmin(P∞(x) + 4

N
(dx Idx − Jdx )) .

More explicitly, we have

(5.5) KG ,x(N) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

K0
∞(x) − 2dx

N
if 0 < N ≤ N0(x),

K0
∞(x) − 2dx

N0(x)
ifN > N0(x),

where

(5.6) N0(x) ∶=
4dx

−λmin (P∞(x))
.

When λmin (P∞(x)) = 0, (5.6) reads as N0(x) =∞.
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Remark 5.8 If dx > 1, 1⊥dx /= ∅, then P∞(x)1 = 0 implies that
1
2
λmin(P∞(x) + 4

N
(dx Idx − Jdx )) = min{0, 1

2
λmin(P∞(x)∣1⊥) +

2
N
dx}

=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

0 if 0 < N ≤ N0(x),

−
2dx

N0(x)
+

2dx
N

ifN > N0(x),

where

N0(x) ∶=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

4dx
−λmin(P∞(x)∣1⊥)

if λmin(P∞(x)∣1⊥) < 0,

∞ if λmin(P∞(x)∣1⊥) ≥ 0.

Since λmin(P∞(x)) = min{0, λmin (P∞(x)∣1⊥)},wehaveN0(x) = N0(x). _ere-
fore (5.5) is a reformulation of (5.4). When dx = 1, we observe P∞(x) and dx Idx − Jdx
are both one by one zero matrices, and, therefore, (5.5) coincides with (5.4).

Example 5.9 (Leaves) Let G = (V , E) be a locally ûnite simple graph. Let x ∈ V be
a leaf of G, i.e., dx = 1. _en, since both P∞(x) and dx Idx − Jdx are one by one zero
matrices, we haveKG ,x(N) = 2 − av+1 (x)

2 − 2
N
for anyN ∈ (0,∞].

_eorem 5.7 tells us thatwhenG is S1-out regular at x, there always existsN0(x) ∈
(0,∞], such that x is N-curvature sharp for any N ∈ (0,N0(x)], and KG ,x(N) =

KG ,x(N0(x)) is constant for N ∈ [N0(x),∞]. In fact, this property is a characteri-
zation of the S1-out regularity of x.

Corollary 5.10 Let G = (V , E) be a locally ûnite simple graph. _en G is S1-out
regular at x if and only if there exists N ∈ (0,∞] such that x is N-curvature sharp.

Proof Assume that x is N-curvature sharp for N ∈ (0,∞]. _en we obtain, by
_eorem 5.4, P̂N(x) ≥ 0. _erefore, by Sylvester’s criterion, we have for any y i ∈

S1(x),

det(
0 d+y i − av

+
1 (x)

d+y i − av
+
1 (x) P∞(x)i i +

4dx
N

− 1) = −(d+y i − av
+
1 (x))2

≥ 0.

_is implies d+y i = av
+
1 (x) for any y i ∈ S1(x).

_e other direction is a straightforward consequence of_eorem 5.7.

Corollary 5.10 and_eorem 5.7 imply the following characterization.

Corollary 5.11 Let G = (V , E) be a locally ûnite simple graph and x ∈ V . _en x is
∞-curvature sharp if and only if G is S1-out regular at x and thematrix P∞(x) ≥ 0.

In the following example, which will play an important role in Example 9.12, we
illustratehow the above results can be applied to calculate explicit curvature functions.

Example 5.12 Figure 4 shows a 4-regular graph G = (V , E) with two types of
vertices, denoted by x1 , x2 , x3 and y1 , y2 , y3 , y4. We will now calculate the curvature
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functions KG ,x i and KG ,y j explicitly. _e symmetries of the graph imply that these
functions do not depend on i or j and it suõces to calculateKG ,x1 andKG ,y1 .

y y y

x x x
1

1 2
y
3 4

2 3

Figure 4: A 4-regular graph with two types of vertices x i and y j

For the calculation ofKG ,x1 , we observe that x1 is S1-out regular and apply _eo-
rem 5.7. We have av+1 (x1) = 2 and (3.3) yieldsK0

∞(x1) =
5
2 . _ematrix P∞(x1) takes

the simple form

P∞(x1) =

⎛
⎜
⎜
⎜
⎝

4 −4 0 0
−4 4 0 0
0 0 4 −4
0 0 −4 4

⎞
⎟
⎟
⎟
⎠

and has λmin(P∞(x1)) = 0 since it is diagonal dominant. _erefore N0(x1), deûned
in (5.6), is equal to inûnity and we haveKG ,x1(N) = 5

2 −
8
N
.

_e calculation ofKG ,y1 is much more involved and, since y1 is not S1-out regular,
we need to employ _eorem 5.4. From the structure of the punctured 2-ball B̊2(y1)

we can derive av+1 (y1) = 3/2 andK0
∞(y1) = 11/4. _erefore, we have

(5.7) KG ,y1(N) =
11
4
−
8
N
−

λ
2
,

with λ ≥ 0 chosen such that P̂N(y1) + λ ⋅ 2Γ(y1) is positive semideûnite with
zero eigenvalue of multiplicity at least 2. Recall that P̂N(y1) was deûned in (5.3)
via P̂∞(y1). So P̂∞(y1) and 2Γ(y1), as matrices with entries corresponding to
y1 , y2 , x1 , x2 , x3, are given by

P̂∞(y1) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 − 3
2

1
2

1
2

1
2

− 3
2

15
2 −2 −2 −2

1
2 −2 17

6 − 2
3 − 2

3
1
2 −2 − 2

3
17
6

−2
3

1
2 −2 − 2

3 − 2
3

17
6

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and 2Γ(y1) =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

4 −1 −1 −1 −1
−1 1 0 0 0
−1 0 1 0 0
−1 0 0 1 0
−1 0 0 0 1

⎞
⎟
⎟
⎟
⎟
⎟
⎠

.

_e eigenvalues of P̂N(y1)+ λ ⋅ 2Γ(y1) are 0, (32+ 2λN + 7N)/(2N) > 0 with multi-
plicity 2, and

f (λ,N) ±
√
f 2(λ,N) + g(λ,N)

2N
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with
f (λ,N) = 6Nλ + 9N + 16 > 0 and g(λ,N) = 5N(−4Nλ2

− (36N + 64)λ + 3N).
For all eigenvalues to be non-negative and two of them to be 0, we need to have
g(λ,N) = 0, leading to

λ =
−(9N + 16) +

√
3N2 + (9N + 16)2

2N
.

Plugging this into (5.7), we obtain

KG ,y1(N) = 5 − 8 +
√

21N2 + 72N + 64
2N

.

In particular, we haveKG ,x i (∞) = 5/2 for i ∈ {1, 2, 3} andKG ,y j(∞) = 5 −
√

21/2 =
2.7087 ⋅ ⋅ ⋅ for j ∈ {1, 2, 3, 4}.
Even though this can also be derived from the symmetries of the graph, the fact that

the curvatures at x i and y j are diòerent implies that there is no graph automorphism
mapping a vertex x i to a vertex y j .

5.2 Proofs of Main Results

In the following, we prove_eorems 5.4, 5.5, and 5.7. Let us ûrst show the following
general result.

Proposition 5.13 Let M be a symmetric square matrix such that M = ( M11 M12
M21 M22

) ,
whereM11 ,M22 are two square submatrices of orders m1 ,m2, respectively, andM22 > 0.
Denote by Q(M) thematrix
(5.8) Q(M) ∶= M11 −M12M−1

22M21 .
_en we have the following.
(i) M ≥ 0 if and only if Q(M) ≥ 0.
(ii) M has zero eigenvalue ofmultiplicity at least 2 if and only ifQ(M) has zero eigen-

value ofmultiplicity at least 2.
(iii) IfM1m1+m2 = 0, then Q(M)1m1 = 0.

Proof SinceM22 > 0, there exists amatrix A0 > 0, such that M22 = A0A⊺0. Set C⊺0 ∶=
A−1
0 M21. _en we have A0C⊺0 = M21 and C0C⊺0 = M12(A−1

0 )⊺A−1
0 M21 = M12M−1

22M21.
_erefore, we obtain

(5.9) M = (
C0
A0

)(C⊺0 A⊺0) + (
Q(M) 0

0 0) .

Observing that the ûrst matrix on the right-hand side of (5.9) is positive semidef-
inite, we conclude that Q(M) ≥ 0 implies M ≥ 0.
Conversely, if Q(M) /≥ 0, then there exists a vector v, such that v⊺Q(M)v < 0. Set

(5.10) w ∶= −(A⊺0)−1C⊺0v .
We calculate

(5.11) (C⊺0 A⊺0)(
v
w) = C⊺0v + A⊺0w = 0.
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By (5.9), this implies ( v⊺ w⊺ )M( v
w ) = v⊺Q(M)v < 0. Hence,M /≥ 0. _is ûnishes the

proof of (i).
Now we prove (ii). Let v1 , v2 be two linearly independent eigenvectors of Q(M)

corresponding to zero. We deûne the corresponding vectorsw i , i = 1, 2 via (5.10). Due
to (5.11), we have M(

v i
w i ) = Q(M)v i = 0, i = 1, 2. _at is, we ûnd two independent

eigenvectors of M corresponding to eigenvalue zero.
Conversely, let ( v i

w i ), i = 1, 2 be two linearly independent eigenvectors ofM corre-
sponding to eigenvalue zero. By (5.9) we have

(5.12) M(
v i
w i

) = 0 Ô⇒ Q(M)v i = 0,

and

(C⊺0 A⊺0)(
v i
w i

) = A−1
0 (M21 M22)(

v i
w i

) = 0.

It remains to prove v1 and v2 are linearly independent. Suppose v1 and v2 are lin-
early dependent. Without loss of generality we can assume v1 = v2. _en we get
M( 0

w1−w2 ) = 0 and, in particular, M22(w1 − w2) = 0. Recall M22 > 0. We have
w1 = w2. _is contradicts the fact that ( v i

w i ), i = 1, 2 are linearly independent. We now
ûnish the proof of (ii).

(iii) is a particular case of (5.12).

_e following lemma is a key observation to applyProposition 5.13 to our situation.

Lemma 5.14 Let G = (V , E) be a locally ûnite simple graph and let x ∈ V . _en we
have

(5.13) P̂∞(x) = (4Γ2)B1 ,B1 − (4Γ2)B1 ,S2(4Γ2)
−1
S2 ,S2(4Γ2)S2 ,B1 − 2K0

∞ ⋅ 2Γ.

Note that we dropped the dependence on x in the right-hand side of (5.13) for
convenience.

Remark 5.15 Let us write

Γ2 −K0
∞Γ = (

(Γ2)B1 ,B1 −K0
∞Γ (Γ2)B1 ,S2

(Γ2)S2 ,B1 (Γ2)S2 ,S2
) .

_en by (5.8), we can reformulate (5.13) as P̂∞ = 4Q(Γ2 −K0
∞Γ).

Proof Recall (2.6), (2.7), and (2.8). We calculate

(4Γ2)B1 ,S2(4Γ2)
−1
S2 ,S2(4Γ2)S2 ,B1 =

(5.14)

⎛
⎜
⎜
⎜
⎜
⎝

d−z1 ⋅ ⋅ ⋅ d−z∣S2 ∣
−2wy1z1 ⋅ ⋅ ⋅ −2wy1z∣S2 ∣

⋮ ⋮ ⋮

−2wydx z1 ⋅ ⋅ ⋅ −2wydx z∣S2 ∣

⎞
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎝

1
d−z1

⋅ ⋅ ⋅ 0
⋮ ⋱ ⋮

0 ⋅ ⋅ ⋅ 1
d−z
∣S2 ∣

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎝

d−z1 ⋅ ⋅ ⋅ d−z∣S2 ∣
−2wy1z1 ⋅ ⋅ ⋅ −2wy1z∣S2 ∣

⋮ ⋮ ⋮

−2wydx z1 ⋅ ⋅ ⋅ −2wydx z∣S2 ∣

⎞
⎟
⎟
⎟
⎟
⎠

⊺
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=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∑z∈S2 d
−
z −2d+y1 ⋅ ⋅ ⋅ −2d+ydx

−2d+y1 4∑z∈S2(x)
w2

y1 z
d−z

⋅ ⋅ ⋅ 4∑z∈S2(x)
wy1 zwzydx

d−z
⋮ ⋮ ⋱ ⋮

−2d+ydx 4∑z∈S2(x)
wydx zwzy1

d−z
⋅ ⋅ ⋅ 4∑z∈S2(x)

w2
ydx z

d−z

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

On the other hand, using (2.1), (2.3), (2.4), and (3.3), we calculate
(5.15)
(4Γ2)B1 ,B1 − 2K0

∞ ⋅ 2Γ =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

dx ⋅ av+1 (x) −d+y1 − av
+
1 (x) −d+y2 − av

+
1 (x) ⋅ ⋅ ⋅ −d+ydx − av

+
1 (x)

−d+y1 − av
+
1 (x) (4Γ2)y1 ,y1 − 2K0

∞ 2 − 4wy1 y2 ⋅ ⋅ ⋅ 2 − 4wy1 ydx
−d+y2 − av

+
1 (x) 2 − 4wy2 y1 (4Γ2)y2 ,y2 − 2K0

∞ ⋅ ⋅ ⋅ 2 − 4wy2 ydx
⋮ ⋮ ⋮ ⋱ ⋮

−d+ydx − av
+
1 (x) 2 − 4wydx y1 2 − 4wydx y2 ⋅ ⋅ ⋅ (4Γ2)ydx ,ydx − 2K0

∞

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where for any y i ∈ S1,

(4Γ2)y i ,y i − 2K0
∞ = (5 − dx + 3d+y i + 4d0y i ) − (3 + dx − av+1 (x))
= −2(dx − 1) + 3d+y i + av

+
1 (x) + 4d0y i .

Observe that dx ⋅ av+1 (x) = ∑y∈S1(x) d
+
y = ∑z∈S2(x) d

−
z . _erefore, subtracting (5.14)

from (5.15) produces thematrix P̂∞(x).

Proof of_eorem 5.4 Recall Proposition 2.1:KG ,x(N) is the solution of the follow-
ing semideûnite programming problem.

maximize K

subject to Γ2(x) −
1
N
∆(x)⊺∆(x) ≥ KΓ(x).

We change the variable K in the above problem to λ, which is given by

(5.16) λ ∶= 2(K0
∞ −

2dx
N

− K) .

Let us write

MK ,N ∶= Γ2 −
1
N
∆⊺∆ − KΓ = (

(Γ2)B1 ,B1 −
1
N
∆⊺∆ − KΓ (Γ2)B1 ,S2

(Γ2)S2 ,B1 (Γ2)S2 ,S2
) .

Recalling (5.8), we have

4Q(MK ,N) = 4Q(Γ2 −K0
∞Γ) + 4(K0

∞ − K)Γ − 4
N
∆⊺∆

= P̂∞ +
4
N

(dx ⋅ 2Γ − ∆⊺∆) + λ ⋅ 2Γ.

In the second equality above, we used Lemma 5.14. Recalling (4.3), we have, by (5.3),

(5.17) 4Q(MK ,N) = P̂N + λ ⋅ 2Γ.
Applying Proposition 5.13 (i),we haveMK ,N ≥ 0 if and only if 4Q(MK ,N) ≥ 0. Hence,
(5.17) implies that the semideûnite programming problem is equivalent to the one in
_eorem 5.4.
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Using (5.16) and (5.17), the equivalence of (i) and (ii) in _eorem 5.4 is then a
straightforward consequence of Corollary 2.7 and Proposition 5.13.

We remark that by (5.17), P̂N1 = 0 can also be derived from MK ,N1 = 0 and Propo-
sition 5.13.

Proof of_eorem 5.5 Applying _eorem 5.4, we only need to show

(5.18) P̂N(x) − λmin(P̂N(x)) ⋅ 2Γ(x) ≥ 0.

Let us denote the abovematrix by L for short. If dx = 1, we have d+y = av+1 (x) for the
neighbor y of x. Recall P̂N(x)1 = 0. We have P̂N(x)1 is a zero matrix. _erefore,
(5.18) is true. If dx > 1, (5.18) is true because P̂N(x)1 = 0, 2Γ(x)1 = 0, and

λmin(L∣1⊥) ≥ λmin( P̂N(x)∣1⊥) − λmin(P̂N(x)) ⋅ λmin(2Γ(x)∣1⊥)

= λmin( P̂N(x)∣1⊥) − λmin(P̂N(x)) ≥ 0.

In the ûrst inequality above, we used the fact λmin(P̂N) ≤ 0, which follows from
P̂N(x)1 = 0, and in the subsequent equality, we used Proposition 2.2.

Proof of_eorem 5.7 Since d+y i = av
+
1 (x) for any y i ∈ S1(x), we have

(5.19) P̂N(x) =
⎛
⎜
⎜
⎜
⎝

0 0 ⋅ ⋅ ⋅ 0
0

P∞(x) + 4
N
(dx Idx − Jdx )⋮

0

⎞
⎟
⎟
⎟
⎠

.

Hence λmin(P̂N(x)) = λmin (P∞(x) + 4
N
(dx Idx − Jdx )). If λmin(P̂N(x)) = 0, then

the equality (5.4) follows from _eorem 5.5 and the upper bound in _eorem 3.1.
Otherwise,we have λmin(P̂N(x)) < 0. By_eorem 5.5, it remains to show that the

matrix P̂N(x)− λmin(P̂N)(x) ⋅2Γ(x) has at least two independent zero eigenvectors.
Recall the constant vector 1dx+1 is one zero eigenvector. Since λmin(P̂N(x)) < 0,
there exist v = (v0 , v1 , . . . , vdx ) ∈ 1⊥dx+1 which is the eigenvector of P̂N corresponding
to λmin(P̂N). By (5.19), we can assume v0 = 0. _en we check 2Γv = v. (Recall
Proposition 2.2). _erefore, v is another zero eigenvector of P̂N − λmin(P̂N) ⋅ 2Γ.

5.3 Families of Examples

We now employ our results to discuss several families of examples.

Example 5.16 (Regular trees) Let Td = (V , E) be a d-regular tree and x ∈ V . We
have

(5.20) KTd ,x(N) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

2 − 2d
N

if 0 < N ≤ 2,

2 − d ifN > 2.

Proof For any y ∈ S1(x), we have d+y = av+1 (x) = d − 1. Hence Td is S1-out regular
at x and we apply _eorem 5.7. Note that all the oò-diagonal entries of P∞(x) equal
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2. _en by the property P∞(x)1 = 0, we obtain P∞(x) = −2(dId − Jd). Observe that
the set of eigenvalues of thematrix dId − Jd is

(5.21) σ(dId − Jd) = {0, d , . . . , d
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶

d−1

}.

_erefore, λmin(P∞(x)) = −2d, andN0(x), deûned in (5.6), is 2. Noticing that

K0
∞(x) = 3 + dx − av+1 (x)

2
= 2,

we obtain (5.20) from (5.5).

While regular trees are N-curvature sharp only for N ∈ (0, 2], we will see that the
complete graphs are curvature sharp for anyN ∈ (0,∞].

Example 5.17 (Complete graphs) Let Kn = (V , E) be the complete graph on n ≥ 2
vertices and x ∈ V . For anyN ∈ (0,∞], we have

(5.22) KKn ,x(N) =
n + 2

2
−

2(n − 1)
N

.

We remark that (5.22) had been obtained in [15, Proposition 3] via a diòerent cal-
culating method. Below we show (5.22) follows immediately from _eorem 5.7.

Proof We check dx = n − 1 and d+y = av+1 (x) = 0, for any y ∈ S1(x). _erefore,

K0
∞(x) = 3 + dx − av+1 (x)

2
=

n + 2
2

.

Sincewy i y j = 1 for any pair of vertices in S1(x), all oò-diagonal entries ofP∞(x) equal
−2. By the propertyP∞(x)1 = 0,we know P∞(x) = 2(n−1)In−1−2Jn−1. Recall (5.21).
We have λmin(P∞(x)) = 0. Hence, we have that N0(x), deûned in (5.6), equals ∞.
By (5.5), we obtain (5.22).

Next,we consider the family of complete bipartite graphs that are possibly irregular
but are still S1-out regular.

Example 5.18 (Complete bipartite graphs) Let Km ,n = (V , E) be a complete bipar-
tite graph. Let x ∈ V be a vertex with degree dx = n. If n = 1 or n ≤ 2m − 2, we have
for anyN ∈ (0,∞]

(5.23) KKm ,n ,x(N) =
4 + n −m

2
−

2n
N

.

If, otherwise, n /= 1 and n > 2m − 2, we have

(5.24) KKm ,n ,x(N) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

4 + n −m
2

−
2n
N

if 0 < N ≤
2n

n − 2m + 2
,

3m − n
2

ifN >
2n

n − 2m + 2
.

In particular, we haveKK1,1(∞) = 2 and, when (n,m) /= (1, 1),

KKm ,n ,x(∞) =
m + 2 − ∣n − 2m + 2∣

2
.
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Remark 5.19 We remark that K2,6 has constant �at curvature, i.e.,KK2,6 ,x(∞) = 0,
for all x. But at each vertex x with degree 2,KK2,6 ,x(N) < 0 for any ûnite dimension
N. _is has already been observed in Example 2.13. On the other hand, at each vertex
y with degree 6, we seeKK2,6 ,y(N) = 0, for anyN ∈ [3,∞].

Proof Let x ∈ V be a vertex such that dx = n. _en we have
d+y = av+1 (x) = m − 1, d0y = 0

for any y ∈ S1(x). _erefore, we obtain

K0
∞(x) = 3 + dx − av+1 (x)

2
=

4 + n −m
2

.

Note that d−z = n, for any y ∈ S1(x), and there are (m − 1) 2-paths connecting any
two vertices y i , y j ∈ S1(x) via a vertex in S2(x). _erefore, each oò-diagonal entry of
P∞(x) equals 2 − 4

n (m − 1). By the property that P∞(x)1 = 0, we have

P∞(x) = − 2
n
(n − 2m + 2)(nIn − Jn).

Recalling (5.21), we have σ(P∞(x)) = {0,−2(n − 2m + 2), . . . ,−2(n − 2m + 2)}.
If n = 1 or n ≤ 2m − 2, i.e., if n = m = 1 or n ≤ 2m − 2, we have λmin(P∞(x)) = 0.

Hence,N0(x) =∞. We obtain (5.23) by (5.5). If, otherwise, n /= 1 and n > 2m − 2, we
have λmin(P∞(x)) = −2(n − 2m + 2). Hence,N0(x) = 2n

n−2m+2 . Noticing that

K0
∞(x) − 2dx

N0(x)
=

4 + n −m
2

− (n − 2m − 2) = 3m − n
2

,

we obtain (5.24) by (5.5).

In particular, we have the curvature function for star graphs Starn = K1,n . We can
suppose n ≥ 2. (Recall when n = 1, Star1 = K1,1 = K2.)
From the above examples, we can derive the curvature function for cycles.

Example 5.20 (Cycles) Let Cn = (V , E) be a cycle graphwith n vertices and x ∈ V .
Since C3 = K3, we have, by Example 5.17, KC3 ,x(N) = 5

2 −
4
N
, for any N ∈ (0,∞].

Since C4 = K2,2, we have, by Example 5.18, KC4 ,x(N) = 2 − 4
N
, for any N ∈ (0,∞].

When n ≥ 5, the local subgraph B2(x) is isomorphic to that of a vertex in a 2-regular
tree, i.e., an inûnite path. _erefore, by Example 5.16, we have

KCn ,x(N) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

2 − 4
N

if 0 < N ≤ 2,

0 ifN > 2,
for n ≥ 5.

6 Curvature and Connectedness of B̊2(x)
In this section,we prove relations between the curvature functionKG ,x at a vertex x ∈
V and topological properties of the punctured 2-ball B̊2(x). More precisely, we show
that the curvature KG ,x(∞) is, with very few exceptions, always negative if B̊2(x)
consists of more than one connected component. We also show that the curvature
functionKG ,x does not decrease under addition of edges in S1(x) or merging of two
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vertices in S2(x) that do not have common neighbours. Obviously, these operations
increase the connectedness of B̊2(x).

6.1 Connected Components and Negative Curvature

Let G = (V , E) be a locally ûnite simple graph, x ∈ V be a vertex, and d = dx its
degree. Henceforth, we assume that we have chosen a speciûc connected component
of B̊2(x). We denote the vertices of this connected component in S1(x) and S2(x)
by y1 , . . . , yr and z1 , . . . , zs , respectively. Figure 5 illustrates connected components
of B̊2(x). Note that the punctured 2-ball B̊2(x) has more than one component if and
only if d > r.

y

yr−11
z

z2

3z

z s−1

zs

r

y
1

y
2

x

Figure 5: Connected components of B̊2(x) in diòerent colours; choosing the red connected
component leads to d = 11 and r = 6.

Our ûrst two results assume that B̊2(x) has more than one connected component,
and distinguish the cases s > 0 (our connected component has vertices in S2(x)) and
s = 0 (our connected component consists entirely of vertices in S1(x)). Our ûrst result
dealswith the case that our connected component of B̊2(x) has only vertices in S1(x).

Lemma 6.1 Assume that B̊2(x) has more than one connected component, i.e., d > r,
and that s = 0 and d ≥ 4. _en we haveKG ,x(∞) < 0.

For the proofs, it is useful to introduce the notations 0t and 1t for the all-zero and
the all-one column vectors of size t.
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Proof Let A be the submatrix of 4Γ2(x) corresponding to the vertices x, y1 , . . . , yr .
Let C be the (2× (r + 1)) matrix C = (

1 0⊺r
0 1⊺r

). _en the (2× 2) matrix A0 = CAC⊺ has
the form

A0 = (
3d + d2 −r(3 + d)
−r(3 + d) r(5 − d) + 2r(r − 1)) .

Since detA0 = −(3 + d)r(d − 3)(d − r), d ≥ 4 implies detA0 < 0 and A0 cannot be
positive semideûnite. _is implies KG ,x(∞) < 0.

Our second result reads as follows.

Lemma 6.2 Assume that B̊2(x) has more than one connected component, i.e., d > r,
and that s > 0 and d ≥ 3. _en we haveKG ,x(∞) < 0.

Proof Let A be the submatrix of 4Γ2(x) corresponding to the vertices x, y1 , . . . , yr ,
z1 , . . . , zs . Let C be the (3 × (1 + r + s)) matrix

C =
⎛
⎜
⎝

1 0⊺r 0⊺s
0 1⊺r 0⊺s
0 0⊺r 1⊺s

⎞
⎟
⎠
.

_en the (3 × 3) matrix A0 = CAC⊺ has the form

(6.1) A0 =
⎛

⎝

3d + d2 −(3 + d)r − S S
−(3 + d)r − S r(5 − d) + 3S + 2r(r − 1) −2S

S −2S S

⎞

⎠

with S = ∑
r
i=1 d+y i = ∑

s
j=1 d−z j ≥ s. Choosing the row vector v = (r, d , d + 1/S), we

obtain

v⊺A0v = −rd(d − 3)(d − r) − 2(d − r) + 1
S
≤

1
S
− 2(d − r) ≤ 1

S
− 4 ≤ −3 < 0.

_is shows that A is not positive semideûnite and, therefore,KG ,x(∞) < 0.

In the situation described in Lemma 6.2, we can only have KG ,x(∞) > 0 if d =

2 and, consequently, r = 1. In this case, there is only one vertex of our connected
component, denoted by y, in S1(x), and the next result tells us that KG ,x(∞) < 0
unless the out degree of y satisûes d+y = 1.

Lemma 6.3 Assume that d = 2 and B̊2(x) has two connected components, i.e.,
S1(x) = {y, y′} and y /∼ y′. _en we haveKG ,x(∞) < 0 if d+y ≥ 2 or d+y′ ≥ 2.

Proof Following the proof of Lemma 6.2, we are in the special case (d , r) = (2, 1)
and S = d+y . _ematrix A0 from (6.1) then simpliûes to

A0 =
⎛

⎝

10 −(5 + S) S
−(5 + S) 3 + 3S −2S

S −2S S
,
⎞

⎠

and we have detA0 = S(5 − 3S). If d+y = S ≥ 2, we obtain detA0 < 0, i.e., 4Γ0 cannot
be positive semideûnite and we have KG ,x(∞) < 0. _e same holds true when we
replace y by y′, ûnishing the proof.
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_eorem 6.4 Let G = (V , E) be a locally ûnite simple graph and x ∈ V . If B̊2(x)
has more than one connected component, then KG ,x(∞) < 0, except for one of the ûve
cases (a)–(e) presented in Figure 6.

(b)

(c)

(d) (e)

(a)
y x y

1 2

z y x y
1 1 2

z y x y z
1 1 2 2

x
y

x
y

y y

y

2 2

1

3

y
1

3

Figure 6: 2-balls B2(x) with KG ,x(∞) ≥ 0. _e corresponding punctured 2-balls B̊2(x) are
red.

Proof We assume that B̊2(x) has at least two connected components and, therefore,
d ≥ 2. If d ≥ 4 we have KG ,x(∞) < 0 by Lemmata 6.1 and 6.2. So it only remains to
investigate 2 ≤ d ≤ 3.

If S2(x) /= ∅, there exists a connected component of B̊2(x) with a vertex in S2(x)
and Lemma 6.2 impliesKG ,x(∞) < 0 if d = 3. Sowe are le�with d = 2 and, in view of
Lemma 6.3, the only remaining possibilities for B2(x) to achieveKG ,x(∞) ≥ 0 when
S2(x) /= ∅ are (b) or (c).

When S2(x) = ∅, d = 2 and KG ,x(∞) ≥ 0 lead necessarily to conûguration (a)
for B2(x). Similarly, d = 3 and KG ,x(∞) ≥ 0 lead necessarily to conûgurations (d)
and (e).

_eorem 6.4 and the curvature calculations for the exceptional cases have the fol-
lowing immediate consequences.

Deûnition 6.5 Let G = (V , E) be a locally ûnite simple graph. An edge e ∈ E is
called an (r, s)-bridge if the graph G decomposes a�er removal of the edge e = {x , y}
into two separate non-empty components and if the degrees of the vertices x and y
in each of the components a�er removal of e are r and s, respectively.

Corollary 6.6 Let G = (V , E) be a locally ûnite simple graph and e = {x , y} ∈ E an
(r, s)-bridge.
(i) If r = 0, x is a leaf and the curvature function KG ,x is given by

KG ,x(N) = 2 − s
2
−

2
N

.

In particular, we haveKG ,x(∞) ≥ 0 if and only if s ≤ 4.
(ii) If r = 1, we can only haveKG ,x(∞) ≥ 0 if s ∈ {0, 1}.
(iii) If r = 2, we haveKG ,x(∞) ≤ 0, and we can only have equality if s = 0.
(iv) If r ≥ 3, we always haveKG ,x(∞) < 0.
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Proof _e case r = 0 follows from Example 5.9. In all other cases, B̊2(x) has at least
two connected components and we can directly apply _eorem 6.4.

Deûnition 6.7 Let G = (V , E) be a locally ûnite simple graph and e ∈ E. _e girth
of e, denoted by girth(e) is the length of the shortest circuit in G containing e. If e is
not contained in any circuit, we deûne girth(e) =∞.

Corollary 6.8 Let G = (V , E) be a locally ûnite simple graph and e = {x , y} ∈ E. If
5 ≤ girth(e) <∞, we haveKG ,x(∞),KG ,y(∞) ≤ 0.

If girth(e) =∞, the only exceptions for KG ,x(∞) < 0 are:
(i) dx ≥ 2 and we have one of the situations (a)–(e) in Figure 6 for B2(x),
(ii) x is a leaf and the other vertex has degree ≤ 5.

Proof _e girth condition 5 ≤ girth(e) < ∞ implies that B̊2(x) has at least two
connected components and we can apply _eorem 6.4. So we only need to consider
the exceptional cases. _e exceptional cases (a) and (b) in Figure 6 imply girth(e) =
∞, and we have in the cases (c)–(e) that KG ,x(∞) = 0. _e same holds true for
the vertex y. Now we assume girth(e) = ∞. If dx ≥ 2, B̊2(x) must have at least
two connected components and we can apply _eorem 6.4. _e only exceptions of
KG ,x(∞) < 0 are then situations (a)–(e) in Figure 6. If dx = 1,we know from Example
5.9 that it has only non-negative curvature if the degree of its neighbour is ≤ 5, which
is precisely the case (ii).

Remark 6.9 B. Hua and Y. Lin [14] classiûed graphs with girth at least 5 and sat-
isfying CD(0,∞). _eir work was carried out independently, provides related, but
diòerent, results, and, in contrast to our context, considers the normalized case.

6.2 Operations That Do Not Decrease the Curvature

In this subsection, we discuss operations that do not decrease the curvature. _e ûrst
one is adding new spherical edges in S1(x).

Proposition 6.10 Let G = (V , E) be a graph and x ∈ V a vertex. Let G′ = (V , E′)
be the graph obtained from G by adding a new spherical edge in S1(x). _en we have
K(G′ , x ; N) ≥K(G , x ; N) for anyN ∈ (0,∞].

Proof Suppose that G′ is obtained from G by adding a new edge {y1 , y2}, where
y1 , y2 ∈ S1(x). _en we have ∆′(x) = ∆(x), Γ′(x) = Γ(x), and

Γ′2(x) − Γ2(x) =
⎛

⎝

0 0 0
0 (Γ2)

′
S1 ,S1

− (Γ2)S1 ,S1 0
0 0 0

⎞

⎠
.

By (2.4), we obtain that

(Γ2)
′
S1 ,S1 − (Γ2)S1 ,S1 =

⎛
⎜
⎜
⎜
⎝

1 −1 ⋅ ⋅ ⋅ 0
−1 1 ⋅ ⋅ ⋅ 0
⋮ ⋮ ⋱ ⋮

0 0 ⋅ ⋅ ⋅ 0

⎞
⎟
⎟
⎟
⎠
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is positive semideûnite. _is completes the proof.

Remark 6.11 By Corollary 2.7, K(G′ , x ; N) = K(G , x ; N) if and only if the
multiplicity of zero eigenvalue of Γ′2(x) − 1

N
∆′(x)⊺∆′(x) −K(G , x ; N)Γ′(x) is no

smaller than 2.

Merging two vertices z1 , z2 in S2(x) also does not decrease the curvature. Herewe
assume the two vertices z1 , z2 do not have common neighbours. Bymerging two ver-
tices z1 , z2, wemean the following operations: Remove the possible edge connecting
z1 and z2 and identify z1 , z2 as a new vertex z, where edges incident to z each corre-
spond to an edge incident to either z1 or z2. _e assumption that z1 , z2 do not have
common neighbours ensures that no multi-edge is produced by this operation.

Proposition 6.12 Let G = (V , E) be a graph and x ∈ V be a vertex. Let G′′ =
(V ′′ , E′′) be the graph obtained from G by merging two vertices in S2(x) that do not
have common neighbours. _en we have for anyN ∈ (0,∞],

K(G′′ , x ; N) ≥K(G , x ; N).

Proof Suppose that G′′ is obtained from G by merging the two vertices z∣S2(x)∣−1,
z∣S2(x)∣ in S2(x) that do not have common neighbours. _en we have ∆′′(x) = ∆(x),
Γ′′(x) = Γ(x). Let C′′ be a (∣B2(x)∣ − 1) × ∣B2(x)∣ matrix

C′′ = (
I∣B2(x)∣−2 0∣B2(x)∣−2 0∣B2(x)∣−2
0⊺∣B2(x)∣−2 1 1 ) .

_en we have Γ′′2 (x) = C′′Γ2(x)(C′′)⊺. _erefore, we have

Γ′′2 (x) − 1
N

(∆′′(x))⊺∆′′(x) −K(G , x ,N)Γ′′(x)

= C′′(Γ2(x) −
1
N
∆(x)⊺∆(x) −K(G , x ,N)Γ(x))(C′′)⊺ ≥ 0.

_is ûnishes the proof.

We believe the following property is true.

Conjecture 6.13 Let G = (V , E) be a graph and x ∈ V be a vertex. Let G′′′ =
(V ′′′ , E′′′) be the graph obtained from G by one of the following two operations:
● Delete a leaf in S2(x) and its incident edge.
● Delete z ∈ S2(x) and its incident edges {{y, z} ∈ E ∶ y ∈ S1(x)}; add a new edge
between every two of {y ∈ S1(x) ∶ {y, z} ∈ E}.

_en we have for anyN ∈ (0,∞],K(G′′′ , x ; N) ≥K(G , x ; N).

7 Curvature Functions of Cartesian Products

In this section, we show that the curvature functions of a Cartesian product can be
explicitly determined from curvature functions of the factors.
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7.1 ∗-product of Functions

We ûrst discuss an abstract product between functions. Let us denote by FK the set
of continuous,monotone non-decreasing functions f ∶ (0,∞]→ R with

lim
N→0

f (N) = −∞.

Recalling Proposition 4.1, curvature functions lie in FK.
For anyN ∈ (0,∞), let Dk(N) be the following set:

Dk(N) ∶= {(N1 , . . . ,Nk) ∶ N j > 0 for all j andN1 + ⋅ ⋅ ⋅ +Nk = N.} .

Deûnition 7.1 (∗-product) For two functions f1 , f2 ∈ FK, we deûne
f1 ∗ f2∶ (0,∞]→ R

as follows. For any N ∈ (0,∞), let f1 ∗ f2(N) ∶= f1(N1) = f2(N2), where (N1 ,N2) ∈

D2(N) is chosen such that

(7.1) f1(N1) = f2(N2).

For N =∞, we deûne f1 ∗ f2(∞) ∶= limN→∞ f1 ∗ f2(N).

Remark 7.2 Let us ûrst verify that the ∗-product is well deûned. For two func-
tions f1 , f2 ∈ FK and N ∈ (0,∞), there always exists a pair (N1 ,N2) ∈ D2(N)

satisfying (7.1). We assume f1(N/2) ≤ f2(N/2) without loss of generality (otherwise,
we interchange the functions). By the Intermediate Value _eorem, the monotonic-
ity of f1, and limh→N/2 f2(N/2 − h) = −∞, we can ûnd 0 < h < N/2 such that
f1(N1 + h) = f2(N2 − h). Note that (N1 + h,N2 − h) ∈ D2(N) is then the required
pair.

Secondly, if there exist two pairs (N1 ,N2), (N′
1 ,N′

2) ∈ D2(N) such that (7.1) holds,
then we have

(7.2) f1(N1) = f1(N′
1) and f2(N2) = f2(N′

2).

Due to the deûnition of D2(N), we can choose i , j such that {i , j} = {1, 2} and Ni ≤

N′
i ,N j ≥ N′

j . _en (7.2) follows from themonotonicity of f1 and f2.
_irdly, the limit limN→∞ f1 ∗ f2(N) exists. For any 0 < N1 ≤ N2 < ∞, let

(N11 ,N12) ∈ D2(N1), (N21 ,N22) ∈ D2(N2) be two tuples such that

f1 ∗ f2(Ni) = f1(Ni1) = f2(Ni2), i = 1, 2.

Since there always exists j ∈ {1, 2} with N1 j ≤ N2 j , we have, from the monotonicity
of f j that f1 ∗ f2(N1) = f j(N1 j) ≤ f j(N2 j) = f1 ∗ f2(N2) ≤ f j(∞). _at is, f1 ∗ f2 is
amonotone non-decreasing function, bounded above by f j(∞) <∞. _erefore, the
limit exists.

We have the following equivalent deûnition of the ∗-product.

Proposition 7.3 Let f1 , f2 ∈ FK and F∶ (0,∞] → R. _en F = f1 ∗ f2 if and only if
we have, for anyN1 ,N2 ∈ (0,∞),
(7.3) min{ f1(N1), f2(N2)} ≤ F(N1 +N2) ≤ max{ f1(N1), f2(N2)},
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and F(∞) = limN→∞ F(N).

Proof If F = f1 ∗ f2, there exists a tuple (N′
1 ,N′

2) ∈ D2(N1 +N2) such that

F(N1 +N2) = f1(N′
1) = f2(N′

2).

Recall that there always exist {i , j} = {1, 2} such that Ni ≤ N′
i andN j ≥ N′

j . _en we
obtain (7.3) by themonotonicity of f1 , f2 and F(∞) = limN→∞ F(N) follows directly
from Deûnition 7.1.

Let F∶ (0,∞] → R be a function satisfying (7.3) and F(∞) = limN→∞ F(N). By
Remark 7.2, for any N ∈ (0,∞), there exists a pair (N1 ,N2) ∈ D2(N), such that
f (N1) = f2(N2). _erefore, (7.3) implies F(N) = f1 ∗ f2(N), ûnishing the proof.

Corollary 7.4 Let f1 , f2 ∈ FK. _en for N ∈ (0,∞), we have

(7.4) f1 ∗ f2(N) ≤ min{ f1(N), f2(N)}.

For N =∞, we have

(7.5) f1 ∗ f2(∞) = min{ f1(∞), f2(∞)}.

Proof ForN ∈ (0,∞), assume f1(N) ≤ f2(N) without loss of generality. Note from
the deûnition of the ∗-product that there existsN1 ∈ (0,N]with f1 ∗ f2(N) = f1(N1).
Using monotonicity of f1, we conclude that

f1 ∗ f2(N) ≤ f1(N) = min{ f1(N), f2(N)},

proving (7.4). Furthermore, we have, by (7.3) and (7.4),

min{ f1(N/2), f2(N/2)} ≤ f1 ∗ f2(N) ≤ min{ f1(N), f2(N)}.

Letting N →∞, we prove (7.5).

We further have the following basic properties of the ∗-product.

Proposition 7.5 Let f1 , f2 ∈ FK. _en we have the following properties:
(i) (Commutativity) f1 ∗ f2 = f2 ∗ f1.
(ii) (Closedness) f1 ∗ f2 ∈ FK.

Proof (i) is obvious from the deûnition.
For (ii), recall ûrst that we have shown monotonicity of f1 ∗ f2 in Remark 7.2.
For anyN ∈ (0,∞), let (N1 ,N2) ∈ D2(N) be the pair with

f1 ∗ f2(N) = f1(N1) = f2(N2).

_en by monotonicity of f2 and Proposition 7.3, we have for any є > 0,

f2(N2) ≤ f1 ∗ f2(N + є) ≤ f2(N2 + є).

By continuity of f2,we see f1∗ f2 is continuous atN. Since by deûnition, f1∗ f2(∞) ∶=

limN→∞ f1 ∗ f2(N), we prove that f1 ∗ f2∶ (0,∞]→ R is continuous.
_e property limN→0 f1 ∗ f2(N) = −∞ follows directly from Proposition 7.3 and

limN→0 f i(N) = −∞, i = 1, 2. _is ûnishes the proof of f1 ∗ f2 ∈ FK.
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_e following proposition shows associativity of the ∗-product and implies, there-
fore, the well-deûnedness of k-fold products.

Proposition 7.6 For f1 , f2 , f3 ∈ FK,we have associativity ( f1∗ f2)∗ f3 = f1∗( f2∗ f3).
For functions f1 , . . . , fk ∈ FK, k ≥ 2, andN ∈ (0,∞), we have

f1 ∗ ⋅ ⋅ ⋅ ∗ fk(N) = f1(N1) = ⋅ ⋅ ⋅ = fk(Nk),
for any tuple (N1 , . . . ,Nk) ∈ Dk(N) with f1(N1) = ⋅ ⋅ ⋅ = fk(Nk). Moreover, such a
tuple always exists. For N =∞, we have
(7.6) f1 ∗ ⋅ ⋅ ⋅ ∗ fk(∞) = min{ f1(∞), . . . , fk(∞)}.
In particular, we have
(7.7) f ∗ ⋅ ⋅ ⋅ ∗ f

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k

(N) = f (N/k), ∀N ∈ (0,∞].

Proof Let f1 , f2 , f3 ∈ FK and N ∈ (0,∞). _e expressions ( f1 ∗ f2) ∗ f3 and
f1 ∗ ( f2 ∗ f3) are well deûned due to closedness of ∗.

We show ûrst the following fact for N1 ,N2 ,N3 ,M1 ,M2 ,M3 > 0. If
N1 +N2 +N3 =M1 +M2 +M3 ,

f1(N1) = f2(N2) = f3(N3), and f1(M1) = f2(M2) = f3(M3),

then f1(N1) = f1(M1). Obviously, we can ûnd i , j ∈ {1, 2, 3} such that Ni ≥ Mi and
N j ≤M j and, using themonotonicity of the functions fk ,

f1(N1) = f i(Ni) ≥ f i(Mi) = f1(M1) = f j(M j) ≥ f j(N j) = f1(N1),
which shows f1(N1) = f1(M1).

Next we show that, for everyN ∈ (0,∞), there exist N1 ,N2 ,N3 > 0 with
N1 +N2 +N3 = N and ( f1 ∗ f2) ∗ f3(N) = f1(N1) = f2(N2) = f3(N3).

By Deûnition 7.1, we haveN′
1 ,N3 > 0 with N′

1 +N3 = N such that
( f1 ∗ f2) ∗ f3(N) = f1 ∗ f2(N′

1) = f3(N3).
Applying Deûnition 7.1 again, we ûndN1 ,N2 > 0 with N1 +N2 = N′

1 such that
f1 ∗ f2(N′

1) = f1(N1) = f2(N2).
Combining these facts,we obtain ( f1 ∗ f2)∗ f3(N) = f1(N1) = f2(N2) = f3(N3)with
N1 +N2 +N3 = N as claimed.
Analogously, one can show that there areM1 ,M2 ,M3 > 0 satisfying
M1 +M2 +M3 = N and f1 ∗ ( f2 ∗ f3)(N) = f1(M1) = f2(M2) = f3(M3).

Now our ûrst fact implies that
( f1 ∗ f2) ∗ f3(N) = f1(N1) = f1(M1) = f1 ∗ ( f2 ∗ f3)(N),

which shows associativity for ûnite arguments N > 0.
_e same arguments lead to the statement about the ∗-product of k functions

f1 , . . . , fk ∈ FK for arguments N ∈ (0,∞) in the proposition. Associativity and the
statements about ∗-products of k functions for the argument N =∞ in the proposi-
tion are easy applications of (7.5).
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Finally, (7.7) can be shown by taking the tuple (N/k, . . . ,N/k) ∈ Dk(N) when
N ∈ (0,∞), and by using (7.6) when N =∞.

Proposition 7.7 Let f1 , f2 , g ∈ FK. _e following are equivalent.
(i) f1 ∗ g /= f2 ∗ g.
(ii) _ere exists N0 ∈ (0,∞] such that f1(N0) /= f2(N0) and f1(N0), f2(N0) ≤

g(∞).

Proof (ii)⇒ (i). Without loss of generality, we can suppose f1(N0) < f2(N0). We
can further suppose f2(N0) < g(∞). _is is because, if f2(N0) = g(∞), we can
choose an N′

0 < N0, such that f2(N′
0) ∈ ( f1(N0), g(∞)). _en we have f1(N′

0) ≤

f1(N0) < f2(N′
0) < g(∞).

WhenN0 ∈ (0,∞), letM0 = min{M′ ∈ (0,∞) ∶ g(M′) = f2(N0)}. _enwe have

f2 ∗ g(N0 +M0) = f2(N0) = g(M0).

By assumption, we know f1(N0) < g(M0). Hence, there exists є > 0 such that

f1 ∗ g(N0 +M0) = f1(N0 + є) = g(M0 − є).

By the choice of M0, we have

f1 ∗ g(N0 +M0) = g(M0 − є) < g(M0) = f2 ∗ g(N0 +M0).

WhenN0 =∞, byCorollary 7.4we have f1∗ g(∞) = f1(∞) < f2(∞) = f2∗ g(∞).
_is ûnishes the proof of (i) assuming (ii).

(i) ⇒ (ii). We prove this by showing its contrapositive. Suppose, for any N ∈

(0,∞], we have

(7.8) f1(N) = f2(N) or max{ f1(N), f2(N)} > g(∞).

For anyN ∈ (0,∞), there exists M1 ,M2 ∈ (0,N) such that

f i ∗ g(N) = f i(Mi) = g(N −Mi), i = 1, 2.

IfM1 =M2, then f1∗g(N) = f2∗g(N). Otherwise,we supposeM1 <M2 without loss
of generality. Bymonotonicity,we have f1(M1) = g(N−M1) ≥ g(N−M2) = f2(M2).
_is implies g(∞) ≥ f1(M1) ≥ f2(M2) ≥ f2(M1). By (7.8), we have f1(M1) =

f2(M1) = f2(M2) and therefore, f1 ∗ g(N) = f2 ∗ g(N).
Letting N →∞, we obtain f1 ∗ g(∞) = f2 ∗ g(∞). _is ûnishes the proof.

Example 7.8 Given a ∈ R, b1 , b2 ∈ (0,∞), let f1 , f2 ∈ FK be the following two
functions: f1(N) ∶= a − b1

N
and f2(N) ∶= a − b2

N
. _en we have

f1 ∗ f2(N) = a − b1 + b2

N
, ∀N ∈ (0,∞].

_is can be veriûed by taking the tuple ( b1
b1+b2N,

b2
b1+2

N) ∈ D2(N) whenN ∈ (0,∞).
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7.2 Main Results

Given two locallyûnite simple graphsG1 = (V1 , E1) andG2 = (V2 , E2), theirCartesian
product G1 × G2 = (V1 × V2 , E12) is a locally ûnite graph with vertex set V1 × V2 and
edge set E12 given by the following rule. Two vertices (x1 , y1), (x2 , y2) ∈ V1 × V2 are
connected by an edge in E12 if x1 = x2 , {y1 , y2} ∈ E2 or {x1 , x2} ∈ E1 , y1 = y2.

We have the following result.

_eorem 7.9 Let G i = (Vi , E i), i = 1, 2 be two locally ûnite simple graphs. _en for
any x ∈ V1 and y ∈ V2, we haveKG1×G2 ,(x ,y) =KG1 ,x ∗KG2 ,y .

Using Proposition 7.3,_eorem 7.9 is derived from the following two theorems.

_eorem 7.10 ([22]) Let G i = (Vi , E i), i = 1, 2, be two locally ûnite simple graphs.
_en we have, for any x ∈ V1 , y ∈ V2, andN1 ,N2 ∈ (0,∞],

KG1×G2 ,(x ,y)(N1 +N2) ≥ min{KG1 ,x(N1),KG2 ,y(N2)}.

_eorem 7.10 was proved in [22, _eorem 2.5]. In this section, we further prove
the following estimate.

_eorem 7.11 Let G i = (Vi , E i), i = 1, 2, be two locally ûnite simple graphs. _en we
have, for any x ∈ V1 , y ∈ V2, andN1 ,N2 ∈ (0,∞],

(7.9) KG1×G2 ,(x ,y)(N1 +N2) ≤ max{KG1 ,x(N1),KG2 ,y(N2)}.

We ûrst recall a technical lemma [22, Lemma 2.6]. Let F∶V1×V2 → R be a function
on the product graph. For ûxed y ∈ V2, we will write Fy( ⋅ ) ∶= F( ⋅ , y) as a function
on V1. Similarly, Fx( ⋅ ) ∶= F(x , ⋅ ). It is straightforward to check

(7.10) ∆F(x , y) = ∆Fy(x) + ∆Fx
(y) and Γ(F)(x , y) = Γ(Fy)(x) + Γ(Fx

)(y).

Lemma 7.12 ([22]) For any function F∶V1 × V2 → R and any (x , y) ∈ V1 × V2, we
have

Γ2(F)(x , y) = Γ2(Fy)(x) + Γ2(Fx
)(y)

+
1
2 ∑x i∼x

∑
yk∼y

(F(x i , yk) − F(x , yk) − F(x i , y) + F(x , y))2 ,

where the operators Γ2 areunderstood to be on diòerent graphs according to the functions
on which they are acting.

Proof of_eorem 7.11 Let f1∶V1 → R be a function with Γ( f1)(x) /= 0, such that

(7.11) Γ2( f1)(x) =
1
N1

(∆ f1(x))2
+KG1 ,x(N1)Γ( f1)(x).

Let f2∶V2 → R be a function with Γ( f2)(x) /= 0, such that

(7.12) Γ2( f2)(x) =
1
N2

(∆ f2(x))2
+KG2 ,x(N2)Γ( f2)(x).
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Let c1 , c2 be two nonnegative real numbers. We deûne a function F∶V1 ×V2 → R such
that Fy( ⋅ ) ∶= c1 f1( ⋅ )+ c2 f2(y), Fx( ⋅ ) ∶= c2 f2( ⋅ )+ c1 f1(x), and, for any {x i , x} ∈ E1
and any {yk , y} ∈ E2, F(x i , yk) ∶= c1 f1(x i) + c2 f2(yk). _en from Lemma 7.12, we
obtain

Γ2(F)(x , y) = Γ2(Fy)(x) + Γ2(Fx
)(y) = c21 Γ2( f1)(x) + c22Γ2( f2)(y).

Inserting (7.11) and (7.12), we have

Γ2(F)(x , y) =
1
N1
∆(c1 f1(x))2

+
1
N2

∆(c2 f2(y))2(7.13)

+KG1 ,x(N1)Γ(c1 f1)(x) +KG1 ,y(N2)Γ(c2 f2)(y).

If 0 < N1, N2 <∞, and ∆ f1(x), ∆ f2(y) are not simultaneously zero, say ∆ f1(x) /= 0,
we set

c1 =
N2

1∆ f2(y)
N2

2∆ f1(x)
, c2 = 1.

_en we have
N2

N1
c1∆ f1(x) =

N1

N2
c2∆ f2(y),

and hence

(7.14) 1
N1
∆(c1 f1(x))2

+
1
N2

∆(c2 f2(y))2
=

1
N1 +N2

(c1∆ f1(x) + c2∆ f2(x))2 .

Using (7.10) and (7.14), we derive from (7.13) that

Γ2(F)(x , y) ≤
1

N1 +N2
(∆F(x , y))2

+max{KG1 ,x(N1),KG1 ,y(N2)}Γ(F)(x , y).

_is implies (7.9) in this case.
Otherwise, if ∆ f1(x) = ∆ f2(y) = 0 or at least one ofN1,N2 equals∞, say,N1 =∞,

we set c1 = 1, c2 = 0. _en we show (7.9) in this case similarly.

By Corollary 7.4, the following result is a straightforward consequence of _eo-
rem 7.9.

Corollary 7.13 Let G i = (Vi , E i), i = 1, 2, be two locally ûnite simple graphs. _en
we have, for any x ∈ V1 , y ∈ V2, andN ∈ (0,∞],

KG1×G2 ,(x ,y)(N) ≤ min{KG1 ,x(N),KG2 ,y(N)}.

When N =∞, the equality holds, i.e.,

KG1×G2 ,(x ,y)(∞) = min{KG1 ,x(∞),KG2 ,y(∞)}.

By Example 7.8, we derive the following result.

Corollary 7.14 Let G i = (Vi , E i), i = 1, 2, be two locally ûnite simple d-regular,
∞-curvature sharp graphs. If either G1 ,G2 are both triangle free, or G1 = G2 with
#∆(x) ≡ const for all x, then G1 ×G2 is also∞-curvature sharp.
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Proof If G1 ,G2 are both triangle free, we have for x ∈ V1, y ∈ V2

KG1 ,x(N) = 2 − 2dx
N

, KG2 ,y(N) = 2 −
2dy
N

.

_eorem 7.9 and Example 7.8 show that KG1×G2 ,(x ,y) = 2 − 2(dx+dy)
N

. _at is, (x , y) is
∞-curvature sharp, since G1 × G2 is also triangle free. _e other case can be shown
similarly.

Corollary 7.14 implies that the Cartesian product of the crown graph Crown(n, n)
and the complete bipartite graph Km ,m is∞-curvature sharp. _e Cartesian product
of Kn , n ≥ 2 with itself is ∞-curvature sharp. In fact, the latter is the line graph of
Kn ,n .

7.3 Example

In this subsection, we present an example illustrating how _eorem 7.9 can be used
to calculate explicit curvature functions.

Example 7.15 (Hypercubes) An n-dimensional hypercube Qn = (V , E), n ≥ 1,
n ∈ Z, is the Cartesian product K2 × ⋅ ⋅ ⋅ × K2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n

. For any x ∈ V , we have

(7.15) KQn ,x(N) = 2 − 2n
N

∀N ∈ (0,∞].

Proof Recall from Example 5.17 that the two vertices in K2 have the same curvature
functionKK2 ,⋅ (N) = 2− 2

N
for allN ∈ (0,∞]. By_eorem 7.9, and the associativity of

∗-product, we knowKQn ,x =KK2 ,⋅ ∗ ⋅ ⋅ ⋅ ∗KK2 ,⋅ . Hence, (7.15) follows from (7.7).

8 Curvature and Spectral Gaps at S1-out Regular Vertices

Let G = (V , E) be a locally ûnite simple graph and x ∈ V . We assume henceforth
that x is an S1-out regular vertex of degree d = dx ≥ 2, i.e., d+y j

= av+1 (x) for all
neighbours y1 , y2 , . . . , yd of x in G. Recall from Corollary 5.11 that S1-out regularity
of x is equivalent to N-curvature sharpness for someN ∈ (0,∞].

Recall also thatwe provided an explicit expression for the curvature function at an
S1-out regular vertex x in _eorem 5.7 in terms of the lowest eigenvalue of a matrix
P∞(x). Our aim in this section is to express P∞(x) via suitable Laplacians, deûned
on graphs with vertex set S1(x). Our main result is _eorem 8.1 below. _is theorem
implies a quantitative version of _eorem 6.4 in the special case of S1-out regularity
(see Corollary 8.4). We will also use this result to deal with the example of John-
son graphs and will ûnish this section with speciûc cardinality estimates of 2-spheres
S2(x) of S1-out regular vertices x ∈ V .

Let ∆S1(x) be the non-normalized Laplacian of the subgraph S1(x) induced by the
vertices {y1 , . . . , yd}, i.e., written as an operator,

∆S1(x) f (y i) = (∑
j/=i

wy i y j f (y j)) − d0y i f (y i).
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Let S′1(x) be the graph with the same vertex set {y1 , . . . , yd} and an edge between y i
and y j if and only if #{z ∈ S2(x) ∣ y i ∼ z ∼ y j} ≥ 1, where ∼ describes adjacency in
the original graphG. We introduce the followingweightsw′

y i y j
on the edges of S′1(x):

w′
y i y j

= ∑
z∈S2(x)

wy i zwz y j

d−z
.

_e corresponding weighted Laplacian is then given by

∆S′1(x) f (y i) = (∑
j/=i

w′
y i y j

f (y j)) − d′y i f (y i),

where

d′y i = ∑
z∈S2(x)

wy i z

d−z
∑
j/=i

wz y j = av
+
1 (x) − ∑

z∈S2(x),z∼y i

1
d−z

.

Let S′′1 (x) = S1(x) ∪ S′1(x), i.e., the vertex set of S′′1 (x) is {y1 , . . . , ydx} and the edge
set is the union of the edge sets of S1(x) and S′1(x). _en the sum ∆S1(x) +∆S′1(x) can
be understood as the weighted Laplacian ∆S′′1 (x) on S′′1 (x) with weightsw′′ = w +w′.
Note that all our Laplacians ∆ are deûned on functions on the vertex set of S1(x).
_ey are non-positive operators by deûnition, and we refer to their eigenvalues λ as
solutions of ∆ f +λ f = 0 tomake these eigenvaluesnon-negative. We denote and order
these eigenvalues (with their multiplicities) by 0 = λ0(∆) ≤ λ1(∆) ≤ ⋅ ⋅ ⋅ ≤ λd−1(∆).
_e second-smallest eigenvalue λ1(∆) ≥ 0 is also called the spectral gap of ∆ and
plays an important role in spectral graph theory. With these operators in place, we
have P∞(x) = −4∆S′′1 (x) − 2(dId − Jd), and_eorem 5.7 implies that

KG ,x(N) =
3 + d − av+1 (x)

2
−

2d
N

+ 2 λmin(−∆S′′1 (x) + (
1
N
−

1
2
)(dId − Jd))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤0

.

_en we have

λmin(−∆S′′1 (x) + (
1
N
−

1
2
)(dId − Jd)) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

0 if λ1 ≥
d
2
−
d
N
,

λ1 + (
d
N
−
d
2
) if λ1 <

d
2
−
d
N

.

_is leads directly to the following result.

_eorem 8.1 Let G = (V , E) be a locally ûnite simple graph and x ∈ V be an S1-out
regular vertex of degree d ≥ 2. Let ∆S′′1 (x) be the weighted Laplacian deûned above with
second-smallest eigenvalue λ1 = λ1(∆S′′1 (x)).

(i) _e case λ1 ≥
d
2 is equivalent to∞-curvature sharpness of x. _en we have

KG ,x(N) =
3 + d − av+1 (x)

2
−

2d
N

.
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(ii) If λ1 <
d
2 , then we have

KG ,x(N) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

3 + d − av+1 (x)
2

−
2d
N

ifN ≤
2d

d − 2λ1
,

3 − d − av+1 (x)
2

+ 2λ1 ifN >
2d

d − 2λ1
.

Remark 8.2 In certain cases, it is advantageous to use the decomposition ∆S′′1 (x) =
∆S1(x) + ∆S′1(x) and to investigate the spectral gaps λ1(∆S1(x)) and λ1(∆S′1(x)) sepa-
rately,making use of speciûc geometric properties of the graphs S1(x) and S′1(x). _e
following examples illustrate this point.

Examples 8.3 Let x be an S1-out regular vertex of the graph G = (V , E) of degree
d ≥ 2.

(i) In our ûrst example we assume S1(x) = Kd and S2(x) = ∅. (_is means that
G = Kd+1.) In this case, S′1(x) is totally disconnected and ∆S′′1 (x) = ∆S1(x). _e eigen-
values of the non-normalized Laplacian ∆Kn on the complete graph Kd are known
to be λ0(∆Kn) = 0 and λ1(∆Kn) = ⋅ ⋅ ⋅ = λd−1(∆Kn) = d and, therefore, _eorem 8.1
yields KG ,x(N) = 3+d

2 − 2d
N
, which is conûrmed by Example 5.17.

(ii) Nextwe assume S1(x) to be totally disconnected, i.e., #∆(x) = 0) and ∣S2(x)∣ =
(
d
2), where every pair of vertices y, y′ ∈ S1(x) is connected to precisely one vertex

z ∈ S2 with d−z = 2. _en ∆S′′1 (x) = ∆S′1(x) and ∆S′1(x) agrees with 1
2∆Kn . _erefore, we

have λ1(∆S′′1 (x)) = d/2 and av
+
1 (x) = d − 1, and_eorem 8.1 yieldsKG ,x(N) = 2− 2d

N
.

(iii) Finally, we assume S1(x) to be totally disconnected and ∣S2(x)∣ = 1, i.e.,
S2(x) = {z}, where every vertex y ∈ S1(x) is connected to z. _en ∆S′′1 (x) = ∆S′1(x)
and ∆S′1(x) agrees with 1

d ∆Kn . _erefore, we have λ1(∆S′′1 (x)) = 1 ≤ d/2 and av+1 (x) =
1, and_eorem 8.1 yields

KG ,x(N) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

2 + d
2

−
2d
N

ifN ≤
2d
d − 2

,

6 − d
2

ifN >
2d
d − 2

.

An immediate consequence of _eorem 8.1 is a stronger quantitative version of
_eorem 6.4 from Section 6 in the case of S1-out regularity.

Corollary 8.4 Let G = (V , E) be a locally ûnite simple graph and x ∈ V an S1-out
regular vertex. If B̊2(x) has more than one connected component, then

KG ,x(N) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

3 + d − av+1 (x)
2

−
2d
N

ifN ≤ 2,

3 − d − av+1 (x)
2

ifN > 2.

In particular, we have KG ,x(∞) =
3−d−av+1 (x)

2 , and KG ,x(∞) < 0 except for the four
cases (a), (c), (d), and (e) presented in Figure 6.
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Proof Note that if B̊2(x) has more than one connected component then d ≥ 2 and
S′′1 (x) has alsomore than one connected component. _is implies that the eigenvalue
0 of ∆S′′1 (x) has multiplicity at least 2. _en we can apply _eorem 8.1 with λ1 = 0 <
d/2. _e case analysis for 3 − d − av+1 (x) ≥ 0 is very similar as in the proof of_eo-
rem 6.4.

Another straightforward consequence of_eorem 8.1 is the following.

Corollary 8.5 Let G = (V , E) be a locally ûnite simple graph and x ∈ V be an S1-out
regular vertex of degree d ≥ 2. Let λ1 ≥ 0 be the second-smallest eigenvalue of ∆S′′1 (x).
_en KG ,x(∞) ≥ 0 is equivalent to

(8.1) av+1 (x) ≤ 3 + d and λ1 ≥
d + av+1 (x) − 3

4
.

In particular, we have KG ,x(∞) ≥ 0 if av+1 (x) ≤ 3 + d and λ1 ≥ d/2. (Note that the
second condition is equivalent to∞-curvature sharpness.)

Remark 8.6 _e importance of Corollary 8.5 is that it relates non-negativity of the
curvature at a vertex x ∈ V to a large enough spectral gap of the weighted Laplacian
∆S′′1 (x) on the 1-sphere S1(x) in the case of S1-out regularity.

Using _eorem 8.1, we can show all Johnson graphs are∞-curvature sharp, which
is an extension of Example 5.17.

Example 8.7 (Johnson graphs) Johnson graph J(n, k) is the graph with the set of
k-element subsets of an n-element set as the vertex set, where two k-element subsets
are adjacent when they have k − 1 elements in common, [5, Section 12.4.2]. In partic-
ular, J(n, 1) is the complete graph Kn , and J(n, 2) is the line graph L(Kn) of Kn . Each
Johnson graph J(n, k) is ∞-curvature sharp. Moreover, for any vertex x of J(n, k),
the curvature function is given by

(8.2) KJ(n ,k),x(N) =
n + 2

2
−

2k(n − k)
N

∀N ∈ (0,∞].

Proof Denote the n-element set by [n] ∶= {1, 2, . . . , n}. Let vertex x be the k-ele-
ment subset {i1 , i2 , . . . , ik} ⊂ [n]. _en the vertices in S1(x) can be listed as

yℓ ,m ∶= {i1 , . . . , îℓ , . . . , ik , jm}, ℓ ∈ [k],m ∈ [n − k],
where { j1 , . . . , jn−k} is the complement of x in [n]. By a hat, we mean to delete the
corresponding element from the set. _erefore, we have d ∶= dx = k(n − k).
Any vertex yℓ ,m ∈ S1(x) is adjacent to the following vertices in S2(x):

zℓ ,ℓ′ ,m ,m′ ∶= {i1 , . . . , îℓ , . . . , îℓ′ , . . . , ik , jm , jm′}, ℓ′ ∈ [k]∖ {ℓ},m′
∈ [n − k]∖ {m}.

_erefore, J(n, k) is S1-out regular at x with av+1 (x) = (k − 1)(n− k − 1). _is implies

K0
∞(x) ∶= 3 + dx − av+1 (x)

2
=

n + 2
2

.

Any vertex zℓ ,ℓ′ ,m ,m′ ∈ S2(x) is adjacent to yℓ ,m , yℓ′ ,m , yℓ ,m′ , yℓ′ ,m′ ∈ S1(x). _at
is, vertices in S2(x) have constant degree 4.
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We now ûgure out the weighted Laplacian ∆S′′1 (x). First observe that two vertices
yℓ1 ,m1 , yℓ2 ,m2 ∈ S1(x) are adjacent if and only if ℓ1 = ℓ2 ,m1 /= m2 or ℓ1 /= ℓ2 ,m1 = m2.
_at is, the subgraph S1(x) is theCartesianproductKk×Kn−k of two complete graphs.
When ℓ1 = ℓ2 ∶= ℓ, m1 /= m2, yℓ1 ,m1 , yℓ2 ,m2 have k − 1 common neighbours in S2(x):
zℓ ,ℓ′ ,m1 ,m2 , ℓ′ ∈ [k] ∖ {ℓ}. When ℓ1 /= ℓ2 , m1 = m2 ∶= m, yℓ1 ,m1 , yℓ2 ,m2 have n − k − 1
common neighbours in S2(x): zℓ1 ,ℓ2 ,m ,m′ , m′ ∈ [n − k] ∖ {m}.
Furthermore, any two vertices yℓ1 ,m1 , yℓ2 ,m2 ∈ S1(x) with ℓ1 /= ℓ2 , m1 /= m2 has

exactly one common neighbour in S2(x), that is, zℓ1 ,ℓ2 ,m1 ,m2 . We note that pairs of
vertices of this kind are not adjacent in the subgraph S1(x).

We denote the weighted complete graph Kk with constant edge weight c1 by
(Kk , c1). Let (Kk , c1) × (Kn−k , c2) be the weighted Cartesian product Kk × Kn−k ,
whose edge weights are naturally inherited from (Kk , c1) and (Kn−k , c2). _en we
have

∆S′′1 (x) = ∆(Kd , 1
4 ) + ∆(Kk ,1+ n−k−1

4 − 1
4 )×(Kn−k ,1+ k−1

4 − 1
4 )

= −
1
4
(dId − Jd) + ∆(Kk , n−k+24 )×(Kn−k , k+24 ) .

Recalling that the Laplacian eigenvalues of the Cartesian product are given by all pos-
sible sums of the Laplacian eigenvalues of the two original graphs, it is straightforward
to check

λ1(∆S′′1 (x)) = min{ k(n − k + 1)
2

, (n − k)(k + 1)
2

} >
k(n − k)

2
=
d
2
.

_erefore, we conclude from _eorem 8.1 that J(n, k) is∞-curvature sharp, and the
curvature function (8.2) then follows immediately.

Remark 8.8 From (8.2), we see the graphs J(n, k) and J(n, n − k) share the same
curvature function. In fact, they are isomorphic. _e isomorphismis given by sending
a k-element subset to its complement. Johnson graphs have many other interesting
properties. _ey are distance-regular, but not always strongly regular. _e diameter
of J(n, k) is min{k, n − k}. Johnson graphs are important in translating many com-
binatorial problems about sets into graph theory. We refer to [5, §12.4.2], [11, §1.6] for
more discussions.

We ûnish this section by a discussion of upper bounds for the cardinality of S2(x).
A trivial upper bound, assuming nothing besides the S1-regularity of x, is given by
(8.3) ∣S2(x)∣ ≤ d ⋅ av+1 (x).
_is estimate does not take into account that diòerent vertices of S1(x) may be con-
nected to the same vertex in S2(x). _e next result gives another upper bound in
terms of the spectral gap. _is result is sometimes better than (8.3) and, at other
times, worse.

Proposition 8.9 Let G = (V , E) be a locally ûnite simple graph and x ∈ V be an
S1-out regular vertex of degree d ≥ 2. Let λ1 ≥ 0 be the second-smallest eigenvalue of
∆S′′1 (x). _en we have ∣S2(x)∣ ≤ (∑

d
j=1(dy j − 1)) − (d − 1)λ1. Note that if B2(x) were

a tree, then∑dj=1(dy j − 1) would be the cardinality of ∣S2(x)∣
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Proof Let λ0 = 0 ≤ λ1 ≤ ⋅ ⋅ ⋅ ≤ λd−1 be the eigenvalues of ∆S′′1 (x). _en we have

(d − 1)λ1 ≤
d−1

∑
j=1

λ j = Trace(−∆S′′1 (x)) = (
d

∑
j=1
d0y j

) + (
d

∑
j=1
d′y j

) .

For the second sum on the right-hand side we obtain
d

∑
j=1
d′y j

=
d

∑
j=1

(av+1 (x) − ∑
z∈S2(x),z∼y j

1
d−z

)

= d av+1 (x) − ∑
z∈S2(x)

∑
j∶y j∼z

1
d−z

= d av+1 (x) − ∣S2(x)∣.

Combining this with the ûrst sum on the right-hand side leads to

(8.4) (d − 1)λ1 ≤ (
d

∑
j=1

(dy j − 1)) − ∣S2(x)∣.

Rearranging this inequality ûnishes the proof.

Combining Proposition 8.9 with inequality (8.1) leads directly to the following re-
sult in the case of non-negative curvature.

Corollary 8.10 LetG = (V , E) be a locally ûnite simple graph and x ∈ V be an S1-out
regular vertex of degree d ≥ 2 satisfying KG ,x(∞) ≥ 0. _en we have av+1 (x) ≤ d + 3
and

∣S2(x)∣ ≤ (
d

∑
j=1

(dy j − 1)) − (d − 1)d + av
+
1 (x) − 3
4

.

_is simpliûes in the case of a d-regular graph to

∣S2(x)∣ ≤ (d − 1)( 3
4
d − av

+
1 (x) − 3

4
) .

Note in comparison that the 2-sphere of a d-regular tree has cardinality (d − 1)d.
Another immediate consequence is the following result.

Corollary 8.11 LetG = (V , E) be a locally ûnite simple graph and x ∈ V be an S1-out
regular vertex of degree d ≥ 2. If x is∞-curvature sharp, we have

∣S2(x)∣ ≤ (
d

∑
j=1

(dy j − 1)) − d(d − 1)
2

.

_is, together with our trivial estimate (8.3), yields in the case of a d-regular graph

S2(x)∣ ≤ min{ d(d − 1)
2

, d ⋅ av+1 (x)} .

Proof Recall that∞-curvature sharpness of x is equivalent to λ1 ≥ d/2. _en apply
Proposition 8.9.
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Remark 8.12 ● _e∞-curvature sharpness condition at a vertex x implies for
d-regular graphs that the cardinality of ∣S2(x)∣ is at most half as large as the corre-
sponding 2-sphere of a d-regular tree. Tightness of this estimate was obtained in Ex-
ample 8.3 (ii).

● Note that in the case of a d-regular graph G = (V , E) the inequalities (8.1) and
(8.4) can also be understood as the following bounds of the spectral gap of ∆S′′1 (x) at
an S1-out regular vertex x ∈ V with KG ,x(∞) ≥ 0:

d
4
+
av+1 (x) − 3

4
≤ λ1 ≤ d −

1
d − 1

∣S2(x)∣.

Moreover, the upper bound for λ1 holds generally without any curvature restriction.

9 Curvature of Cayley Graphs

It is a well-known general fact that all abelian Cayley graphs or, more generally, all
Ricci-�at graphs lie in the class CD(0,∞) [7, 19]. In this section, we will consider
more subtle curvature properties of abelian and especially also non-abelian Cayley
graphs.

Generally, a Cayley graph G = Cay(Γ, S) is determined by a discrete group Γ and
a ûnite set of generators S ⊂ Γ that is symmetric, i.e., if s ∈ S, then also s−1 ∈ S. _e
vertices of a Cayley graph are the elements of Γ and every directed edge can be labelled
by one of the generators in S.

Henceforth, e ∈ Γ denotes the identity element and S never contains e, which
would give rise to a loop. Note that if a generator s ∈ S has order 2, i.e., if s = s−1, this
element is contained only once in S and gives rise to a single edge emanating from
any given vertex, and labelled in both directions by s. Any non-empty word r(S) in
the generators S is called a relation if it represents the identity element. Geometrically,
every relation corresponds one-to-one to a closed walk in the corresponding Cayley
graph starting from and returning to, say, the identity e ∈ Γ. We call a relation reduced,
if it does not contain a subword of the form ss−1. Geometrically, the corresponding
closed walk is without backtracking. Note that Cayley graphs are ∣S∣-regular and ver-
tex transitive. Since every regular graph without triangles is S1-out regular, the same
holds true for Cayley graphs Cay(Γ, S) which do not have relations of length 3. Most
of our examples of Cayley graphs will have this property.

Since all vertices have the same curvature function, we can drop the reference to
the vertex and simply writeKG for KG ,e .

We start by presenting a general family of abelian Cayley graphs having precisely
zero curvature at inûnity.

_eorem 9.1 Let G = Cay(Γ, S) be an abelian Cayley graph with 2m = ∣S∣ ≥ 2. If all
reduced relations of S have length ≥ 5 except for the relations s1s2s−1

1 s−1
2 expressing the

commutativity, then we have

KG(N) =

⎧⎪⎪
⎨
⎪⎪⎩

2 − 4m
N

ifN ≤ 2m,
0 ifN > 2m.

In particular, we haveKG(∞) = 0.
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Proof First recall that G is d-regular with d = 2m.
If S contains an element s ∈ S of order k ≤ 4, the word sk is a reduced relation of

length ≤ 4. _erefore, all elements of S have order at least 5.
Nextwe describe the structure of B̊2(e). We have S1(e) = S with no edges between

two diòerent vertices of S1(e). A pair of vertices s1 , s2 ∈ S1(e) is connected via a
unique vertex s1s2 = s2s1 in S2(e) if and only if s1 /= s−1

2 . Otherwise, s1 and s2 are
not connected via a vertex in S2(e). Moreover, every vertex s ∈ S1(e) is adjacent to
its square s2 ∈ S2(x). Since G is S1-out regular (it does not have relations of length
3), we can apply the results of Section 8. In particular, we have av+1 (e) = 2m − 1 and
d−s1 s2 = 2 and d−s2 = 1 for s1 , s2 , s ∈ S with s1 /= s±1

2 . As a consequence, S′1(e) = S′′1 (e)
is the cocktail party graph of 2m = ∣S∣ vertices. _e spectrum of the adjacency matrix
AS′′1 (e) of S′′1 (e) is known [5, Section 8.1] to be

σ(AS′′1 (e)) = {−2, . . . ,−2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

m−1

, 0, . . . , 0
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

m

, 2m − 2}.

_e weights of the weighted Laplacian ∆S′′1 (e) are all equal to 1/2 and, therefore, we
have λ1(∆S′′1 (e)) = m − 1 < d/2 = m. Note that 3 + d − av+1 (x) = 4 and _eorem 8.1
(ii) tells us that

KG(N) =

⎧⎪⎪
⎨
⎪⎪⎩

2 − 4m
N

ifN ≤ 2m,
0 ifN > 2m.

Remark 9.2 In fact, there exists an absolute constant C such that for any abelian
Cayley graph G = Cay(Γ, S) with degree d = ∣S∣ and size N , we have

0 ≤KG(∞) ≤ CdN− 4
d .

In particular, when the size N → ∞, KG(∞) tends to zero. _is follows from two
estimates for the eigenvalue λ1(∆) of the Laplacian ∆ of G. A Lichnerowicz type
estimate [6, 16] gives λ1(∆) ≥KG(∞); Friedman,Murty, and Tillich [10] proved that
there exists an absolute constant C such that for any abelian Cayley graph, λ1(∆) ≤

CdN− 4
d .

Nowwemove on to generalCayley graphs that areno longer assumed to be abelian.
All our groups Γ are ûnitely presented, i.e., Γ = ⟨S ∣ R⟩, where S ⊂ Γ ∖ {e} is ûnite
and symmetric and R consists of ûnitely many words r1(S), . . . , rN(S), the so-called
deûning relations of (the presentation of) Γ. We conjecture that the curvature function
behaves monotonically under addition of deûning relations.

Conjecture 9.3 Let Γ be given by Γ = ⟨S ∣ r1(S), . . . , rN(S)⟩, and Γ′ be another
group, diòering from Γ by one additional deûning relation:

Γ′ = ⟨S ∣ r1(S), . . . , rN(S), r′(S)⟩.

Assume that none of the generators in S ⊂ Γ is redundant in Γ′, i.e., for any two
diòerent generators s1 , s2 ∈ S in the original group Γ we also have s1 /= s2 in Γ′ and
s1 /= eΓ′ /= s2. _en the associated Cayley graphs G = Cay(Γ, S) and G′ = Cay(Γ′ , S)
are both ∣S∣-regular and we haveKG′(N) ≥KG(N), for all N ∈ (0,∞].
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Example 9.4 _e Cayley graph G of the free abelian group Γ = ⟨{a±1} ∣ ∅⟩ is the
2-regular tree T2. _eorem 9.1 tells us that

KG(N) =KT2(N) =

⎧⎪⎪
⎨
⎪⎪⎩

2 − 4
N

ifN ≤ 2,
0 ifN > 2.

Let
(9.1) Γ′ = ⟨{a±1

} ∣ ak
⟩

for some k ≥ 3. _e corresponding Cayley graph agrees with the k-cycle Ck , and
Example 5.20 shows that KC3(N) ≥ KC4(N) ≥ KCn(N) = KT2(N) for all n ≥ 5.
If we choose k = 1 or k = 2 in (9.1), the original generator set S = {a±1} becomes
redundant in Γ′, since then a = e or a = a−1, respectively.

Here is another fact supporting the above conjecture.

Proposition 9.5 Let Γ and Γ′ be deûned as inConjecture 9.3. If every reduced relation
r(S) of Γ′ that is not a relation of Γ, i.e., does not represent the identity in Γ, has length
at least ≥ 4, then the statement of the conjecture is true. (We refer to these relations as
new relations in Γ′. Note this property is required for all relations of Γ′ and not only for
the deûning ones.)

Proof _e additional deûning relation r′(S) of Γ′ leads to a surjective group homo-
morphism Γ → Γ′. Correspondingly, there is a map from the vertices of the Cayley
graph G to the vertices of the Cayley graph G′. _e non-redundancy condition on
the set S of generators implies that this map is a bijection between the 1-balls BG

1 (e)
and BG′

1 (e). Generally, diòerent elements in Γ may be mapped to the same element
in Γ′. On the Cayley graph level, this corresponds to amerging/identiûcation of dif-
ferent vertices in G to end up with the graph G′. For our curvature consideration, we
are only concerned with identiûcations appearing inside the punctured 2-balls of the
identities. _e condition on the length of new relations guarantees that such an iden-
tiûcation aòects only vertices in the 2-spheres SG

2 (e) and SG′

2 (e) (since any identiûca-
tion of a vertex in BG

2 (e)with a vertex in BG
1 (e)would correspond to a new relation of

length ≤ 3 in Γ′). _erefore, the transition from B̊G
2 (x) to B̊G′

2 (x) can be described via
a succession ofmergings of pairs of vertices in the 2-sphere. Since the directed edges
of both Cayley graphs G and G′ are labelled by elements of S, two diòerent vertices
can only bemerged if they do not have common neighbours. _is allows us to apply
Proposition 6.12 repeatedly and we conclude that we haveKG′(N) ≥KG(N) for any
N ∈ (0,∞].

Dihedral groups D2k are examples of Coxeter groups. Coxeter groups are groups
W with generators S = {s1 , . . . , sk} and presentations

(9.2) W = ⟨S ∣ (s i s j)
m(i , j)

⟩,
wherem(i , i) = 1 andm(i , j) ≥ 2 for all i /= j. It is also possible to choosem(i , j) =∞,
which means that there is no relation between the generators s i and s j . _e condition
m(i , i) = 1 means that each generator s i has order 2, and the condition m(i , j) = 2
means that the generators s i and s j commute. We associate a Coxeter diagram (also
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called Dynkin diagram)with a givenCoxeter group (9.2) as follows: it is a ûnite graph
with k vertices (every vertex represents a generator s j) and the vertices correspond-
ing to s i and s j are connected by an edge if and only if m(i , j) ≥ 3. For example, the
Coxeter diagram of the dihedral group D2k = ⟨{s1 , s2} ∣ s21 , s22 , (s1s2)k⟩ is the com-
plete graphK2. _e Coxeter diagram carries all information to calculate the curvature
function of the Cayley graph Cay(W , S).

_eorem 9.6 Let (W , S) be a Coxeter group as deûned in (9.2) with k = ∣S∣. Assume
that the corresponding Coxeter diagram has at least one edge. Let µmax(W , S) ∈ (0, k]
be themaximal eigenvalue of the non-normalized Laplacian on the corresponding Cox-
eter diagram. _en the curvature function of G = Cay(W , S) is given by

KG(N) =

⎧⎪⎪
⎨
⎪⎪⎩

2 − 2k
N

ifN ≤ N0,
2 − µmax(W , S) ifN > N0,

with N0 = 2k/µmax(W , S).

Proof Let (W , S) be a Coxeter group as deûned in (9.2) and G = Cay(W , S) be
the associated Cayley graph. First we extend the notion of a reduced relation to be
any relation which neither contains subwords of the form ss−1 nor of the form s2 for
s ∈ S (since s−1 = s). _en the Coxeter group (W , S) does not have any non-trivial
reduced relation of length ≤ 4 other than (s i s j)

m(i , j) with m(i , j) = 2. _is is a
direct consequence ofTits’s solution of theword problem forCoxeter groups [9,_eo-
rem 3.4.2]. In particular,G is triangle free and S1-out regularwith av+1 (e) = k− 1. _e
induced subgraph S1(e) of G does not have any edges and its vertices correspond to
the generators in S. Moreover, two diòerent vertices s i , s j ∈ S are connected by an
edge in S′1(e) = S′′1 (e) if and only if m(i , j) = 2 (since the relation (s i s j)

2 means in
the original graph G that s i and s j have the unique common neighbour s i s j = s js i
in S2(e)). _is implies that S′′1 (e) is the complement of the Coxeter diagram. Since
the in degree of s i s j ∈ S2(e) in the case m(i , j) = 2 is equal to 2, all weights of the
weighted Laplacian ∆S′′1 (e) are equal to 1/2, and we have (see [5, Section 1.3.2] for the
spectrum of the complement)

λ1 = λ1(∆S′′1 (e)) =
1
2
(k − µmax

(W , S)).

Since d = k, we have λ1 < d/2 and the statement of the theorem follows directly from
_eorem 8.1 (ii).

Remark 9.7 If the Coxeter diagram of (W , S) has no edges, we are in the case of
the Coxeter group Ak

1 = A1 × ⋅ ⋅ ⋅ × A1 (with k = ∣S∣) and we have µmax(W , S) = 0.
It can be checked similarly as above that the Cayley graph G = Cay(W , S) is then
∞-curvature sharp andKG(N) = 2 − 2k

N
.

Example 9.8 _e Coxeter diagrams of the ûnite Coxeter group An and the aõne
Coxeter group Ãn , n ≥ 2, are the path Pn and the cycle Cn+1.

Let us now calculate the curvature functions of the corresponding Cayley graphs
Gn = Cay(An , {s1 , . . . , sn}) and G′

n = Cay(Ãn , {s1 , . . . , sn+1}). (In the particular
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case n = 2, G2 is the hexagon C6 andG′
2 can be viewed as the 1-skeleton of the regular

hexagonal tiling of R2.)
_e spectrum of the non-normalized Laplacian on Pn is given by

µ j = 2 − 2 cos(π j/n)

for j = 0, 1, . . . , n − 1 (see [5, Section 1.4.4]), and therefore µmax = 2 − 2 cos( n−1
n π).

_erefore, we have

KGn(N) =

⎧⎪⎪
⎨
⎪⎪⎩

2 − 2n
N

ifN ≤ N0,
2 cos( n−1

n π) ifN > N0,

with N0 = n/(1 − cos(π(n − 1)/n)). In particular, we have limn→∞KGn(∞) = −2.
_e spectrum of the non-normalized Laplacian on Cn+1 is

µ j = 2 − 2 cos(2π j/(n + 1))
for j = 0, 1, . . . , n [5, §1.4.3], which implies

µmax
= 2 − 2 cos( n + δodd(n)

n + 1
π) ,

with δodd(n) ∈ {0, 1} taking the value 1 if and only if n is odd. _erefore, we have

KG′
n
(N) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

2 − 2(n + 1)
N

ifN ≤ N0,

2 − 2 cos( n + δodd(n)
n + 1

π) ifN > N0,

with N0 = (n + 1)/(1 − cos(π(n + δodd(n))/(n + 1))). Again we have
lim
n→∞KG′

n
(∞) = −2.

9.1 Global Structure of Graphs Satisfying CD(0,∞)

We end this section bydiscussing global results and conjectures andpresent an inûnite
family of 6-regular graphs satisfying CD(0,∞) that are not Cayley graphs.
Embarrassingly, we know very little about the global structure of graphs satisfying

CD(K ,∞) for a ûxed K ≥ 0. Let us start with the following two fundamental facts.
● _e class CD(K ,∞) is closed under taking Cartesian products.
● All abelian Cayley graphs lie in the class CD(0,∞) [7, 16, 19].

Some local properties of graphs in the class CD(0,N) for ûnite dimensionN were
already discussed in Section 2.5. Onemight hope that every graph in CD(0,∞) lies
also in CD(0,N) for some large enough ûniteN, butwe saw that the complete bipar-
tite graph K2,6 is a counterexample (Example 2.13). Other local obstructions to satisfy
CD(0,∞) were discussed in Section 6.

It is natural to investigatewhether known global results for Riemannianmanifolds
with lower bounds on their Ricci curvature have analogues in the graph theoretical
setting. _e following result on the global structure of positively curved graphs can
be found in [21] and can be viewed as some analogue of a Bonnet–Myers _eorem.
(It was included as a conjecture in an earlier version of this paper before it became a
theorem; back then it was Conjecture 8.1.)
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_eorem 9.9 (Corollary 2.2, [21]) Let G = (V , E) be a graph satisfying CD(K ,∞)

for K > 0. If G has bounded vertex degree ≤ dmax, then G is a ûnite graph and we have
diam(G) ≤ 2dmax

K .

Examples of ûnite regular graphs in CD(2,∞) with increasing diameters are the
hypercubes Qn that are Cartesian products of n copies of K2. Both the vertex degree
and diameter of Qn are n, showing that the diameter bound in the above theorem
must depend on dmax.

_e following conjecture can be viewed as some analogue of Bishop’s Comparison
_eorem.

Conjecture 9.10 Let dmax ∈ N. _en every graph G = (V , E) with dx ≤ dmax for
all x ∈ V satisfying CD(0,∞) has polynomial volume growth. Moreover, there are
constants C1 ,C2 > 0, only depending on dmax that for all x ∈ V and r ∈ N,

∣Br(x)∣ ≤ C1(1 + rC2).

Examples of inûnite regular graphs in CD(0,∞) with polynomial volume growth
are abelianCayley graphs. _e dependence on themaximal degree dmax follows easily
from the construction of taking Cartesian products.

_e following conjecture would be a direct consequence of Conjecture 9.10, since
the Cheeger isoperimetric constants h(Gn) of increasing d-regular graphs Gn with
uniform upper polynomial volume growth must tend to zero.

Conjecture 9.11 Let d ∈ N. No inûnite family of ûnite increasing d-regular graphs
satisfying CD(0,∞) can be a family of expander graphs.

A corresponding statement for d-regular abelian Cayley graphs is well known [1].
_erefore, it is natural to ask whether CD(0,∞) is really a substantially larger class
than the class of all abelianCayley graphs. To ûnish this section,we present an inûnite
family of ûnite increasing 6-regular non-Cayley graphs Gn satisfying CD(0,∞).

Example 9.12 Let G = (V , E) be the 4-regular graph introduced in Example 5.12.
_e curvature calculations there showed that G satisûes CD(5/2,∞). Let Gn be the
Cartesian product of G with the cycle Cn . Since Cn satisûes CD(0,∞), the graphs
Gn are a family of increasing 6-regular graphs satisfying also CD(0,∞). Each of the
graphs Gn is not a Cayley graph.

Proof From Example 5.20, we see 0 ≤ KCn ,⋅(∞). Recall from Example 5.12 that
there are vertices in G with diòerent curvature functions, i.e.,

KG ,x1(N) =
5
2
−
8
N

and KG ,y1(N) = 5 − 8 +
√

21N2 + 72N + 64
2N

.

Note that KG ,x1(1) <KG ,y1(1) < 0 ≤KCn , ⋅ (∞). We have, by Proposition 7.7,

KG ,x1 ∗KCn , ⋅ /=KG ,y1 ∗KCn , ⋅ .

_erefore, there are vertices in Gn = G × Cn with diòerent curvature functions. _is
rules out that any of the graphs Gn is a Cayley graph.
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10 Curvature Functions of Graphs With General Measures

Many of the computing methods for the Bakry–Émery curvature functions discussed
above are extendible to the following general setting. LetG = (V , E) be a locally ûnite
simple graph. We can assign a symmetric nonnegative edgeweightw∶ E → [0,∞) and
a positive vertex measure µ∶V → (0,∞). For {x , y} ∈ E, we write wx y = wyx . (Re-
call that we used a zero/one valued edge weight in (2.5).) We consider the curvature
functions corresponding to the following Laplacian:

∆µ ,w f (x) ∶=
1

µ(x) ∑y ,y∼x
wx y( f (y) − f (x)).

Denote dx ∶= ∑y ,y∼x wx y , and let S1(x) = {y1 , . . . , yk}. By deûnition, it is straight-
forward to ûnd the following matrices. We have

∆µ ,w(x) =
1

µ(x)
(−dx wx y1 ⋅ ⋅ ⋅ wx yk),

2Γµ ,w(x) =
1

µ(x)

⎛
⎜
⎜
⎜
⎝

dx −wx y1 ⋅ ⋅ ⋅ −wx yk
−wx y1 wx y1 ⋅ ⋅ ⋅ 0
⋮ ⋮ ⋱ ⋮

−wx yk 0 ⋅ ⋅ ⋅ wx yk

⎞
⎟
⎟
⎟
⎠

.

_ematrix 4Γfull2 (x) is given entry-wise as follows:

(4Γfull2 (x))x ,x =
d2
x

µ(x)2 +
3

µ(x) ∑
y∈S1(x)

w2
x y

µ(y)

and for any y ∈ S1(x),

(4Γfull2 (x))x ,y = −
3w2

x y

µ(x)µ(y)
+

wx y

µ(x)µ(y)
( ∑
z∈S2(x),z∼y

wyz) +
dxwx y

µ(x)2

−
1

µ(x) ∑
y′∈S1(x),y′∼y

(
wx ywy y′

µ(y)
−
wx y′wy y′

µ(y′)
) ,

(4Γfull2 (x))y ,y =
3w2

x y

µ(x)µ(y)
+

2w2
x y

µ(x)2 −
dxwx y

µ(x)
+

3wx y

µ(x)µ(y) ∑
z∈S2(x),z∼y

wyz

+ ∑
y′∈S1(x),y′∼y

(
wx y′wy y′

µ(y′)
+ 3

wx ywy y′

µ(y)
) .

For any y i , y j ∈ S1(x), y i /= y j ,

(4Γfull2 (x))y i ,y j = 2
wx y iwx y j

µ(x)2 −
1

µ(x)
(
2wx y iwy i y j

µ(y i)
+

2wx y jwy i y j

µ(y j)
) .

For any z ∈ S2(x),

(4Γfull2 (x))x ,z = (4Γfull2 (x))z ,z =
1

µ(x) ∑
y∈S1(x),y∼z

wx ywyz

µ(y)
,

(4Γfull2 (x))y ,z = −
2wx ywyz

µ(x)µ(y)
,
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and for any z1 , z2 ∈ S2(x), z1 /= z2, (4Γfull2 (x))z1 ,z2 = 0.
When w ≡ 1 and µ ≡ 1, it reduces to the non-normalized Laplacian (1.1).
Nowwe discuss brie�y the curvature functionsKnor

G ,x( ⋅ ) corresponding to the nor-
malized Laplacian, i.e., the case w ≡ 1 and µ(x) = dx , for all x ∈ V . _is provides
another interesting special case. Finally, we discuss some further analogous funda-
mental curvature results in the normalized case.

We have ∆nor(x) = 1
dx

(−dx 1 ⋅ ⋅ ⋅ 1), and

2Γnor
(x) = 1

dx

⎛
⎜
⎜
⎜
⎝

dx −1 ⋅ ⋅ ⋅ −1
−1 1 ⋅ ⋅ ⋅ 0
⋮ ⋮ ⋱ ⋮

−1 0 ⋅ ⋅ ⋅ 1

⎞
⎟
⎟
⎟
⎠

.

By using the full formula above, thematrix 4Γnor
2 (x) is given entry-wise as follows:

(4Γnor
2 (x))x ,x = 1 + 3

dx
∑

y∈S1(x)

1
dy
,

and for any y ∈ S1(x),

(4Γnor
2 (x))x ,y = −

3 + dy + d+y
dxdy

−
1
dx

∑
y′∈S1(x),y′∼y

(
1
dy

−
1
dy′

) ,

(4Γnor
2 (x))y ,y =

2
d2
x
+

3 − dy + 3d+y
dxdy

+
1
dx

∑
y′∈S1(x),y′∼y

(
1
dy′

+
3
dy

) .

For any y i , y j ∈ S1(x), y i /= y j ,

(4Γnor
2 (x))y i ,y j =

2
d2
x
−
wy i y j

dx
(

2
dy1

+
2
dy2

) ,

and for any z ∈ S2(x),

(4Γnor
2 (x))x ,z = (4Γnor

2 (x))z ,z =
1
dx

∑
y∈S1(x),y∼z

1
dy
,

(4Γnor
2 (x))y ,z = −

2wyz

dxdy
.

For any z1 , z2 ∈ S2(x), z1 /= z2, (4Γnor
2 (x))z1 ,z2 = 0.

We have the following upper bounds.

_eorem 10.1 Let G = (V , E) be a locally ûnite simple graph and let x ∈ V(G). For
N ∈ (0,∞], we have

Knor
G ,x(N) ≤

1
2dx

∑
y∈S1(x)

4 + #∆(x , y)
dy

−
2
N

=
1

2dx
∑

y∈S1(x)

3 + dy − d+y
dy

−
2
N

.

Proof _is can be shown by applying Sylvester’s criterion to the submatrix of

Γnor
2 (x) − 1

N
(∆nor

(x))⊺∆nor
(x) −Knor

G ,x(N)Γ(x)

corresponding to the vertices {x} ⊔ S2(x).
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Finally, we present an example for which Knor
G ,x(∞) and KG ,x(∞) have diòerent

signs at every vertex x. Figures 7 and 8 are taken from the web-application for calcu-
lation of curvature on graphs byDavid Cushing andGeorgeW. Stagg. _e number of
each vertex is the corresponding curvature value.

Figure 7: Normalized curvatureKnor
G , ⋅ (∞) Figure 8: Non-normalized curvatureKG , ⋅ (∞)
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