A group G satisfies the second Engel condition [X,Y,Y ]=1 if and only if x commutes with xy, for all x,y∈G. This paper considers the generalization of this condition to groups G such that, for fixed positive integers r and s, xr commutes with (xs)y for all x,y∈G. Various general bounds are proved for the structure of groups in the corresponding variety, defined by the law [Xr,(Xs)Y]=1.