Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-25T07:29:47.801Z Has data issue: false hasContentIssue false

Reductionist thinking and animal models in neuropsychiatric research

Published online by Cambridge University Press:  06 March 2019

Nicole M. Baran*
Affiliation:
School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332. [email protected]://www.nicolembaran.com

Abstract

Reductionist thinking in neuroscience is manifest in the widespread use of animal models of neuropsychiatric disorders. Broader investigations of diverse behaviors in non-model organisms and longer-term study of the mechanisms of plasticity will yield fundamental insights into the neurobiological, developmental, genetic, and environmental factors contributing to the “massively multifactorial system networks” which go awry in mental disorders.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baran, N. M. (2017) Sensitive periods, vasotocin-family peptides, and the evolution and development of social behavior. Frontiers in Endocrinology 8: article no. 00189. (Online journal). Available at: https://doi.org/10.3389/fendo.2017.00189.Google Scholar
Caspi, A., Hariri, A. R., Holmes, A., Uher, R. & Moffitt, T. E. (2010) Genetic sensitivity to the environment: The case of the serotonin transporter gene and its implications for studying complex diseases and traits. FOCUS 8(3):398416. Available at: https://doi.org/10.1176/foc.8.3.foc398.Google Scholar
Kazdoba, T. M., Leach, P. T., Yang, M., Silverman, J. L., Solomon, M. & Crawley, J. N. (2016) Translational mouse models of autism: Advancing toward pharmacological therapeutics. In: Translational Neuropsychopharmacology, ed. Robbins, T. W. & Sahakian, B. J., pp. 152. [Series: Current Topics in Behavioral Neurosciences, vol. 28]. Springer. doi/10.1007/7854_2015_5003.Google Scholar
Knudsen, E. I. (2011) Control from below: The role of a midbrain network in spatial attention. European Journal of Neuroscience 33(11):1961–72. Available at: https://doi.org/10.1111/j.1460-9568.2011.07696.x.Google Scholar
Krakauer, J. W., Ghazanfar, A. A., Gomez-Marin, A., MacIver, M. A. & Poeppel, D. (2017) Neuroscience needs behavior: Correcting a reductionist bias. Neuron 93(3):480–90. Available at: https://doi.org/10.1016/j.neuron.2016.12.041.Google Scholar
Markou, A., Chiamulera, C., Geyer, M. A., Tricklebank, M. & Steckler, T. (2009) Removing obstacles in neuroscience drug discovery: The future path for animal models. Neuropsychopharmacology 34(1):7489. Available at: https://doi.org/10.1038/npp.2008.173.Google Scholar
Maruska, K. P. & Fernald, R. D. (2018) Astatotilapia burtoni: A model system for analyzing the neurobiology of behavior. ACS Chemical Neuroscience 9(8):1951–62. doi:10.1021/acschemneuro.7b00496.Google Scholar
McGraw, L. A. & Young, L. J. (2010) The prairie vole: An emerging model organism for understanding the social brain. Trends in Neurosciences 33(2):103109. doi:10.1016/j.tins.2009.11.006.Google Scholar
Meaney, M. J. (2017) Epigenetics and the biology of gene × environment interactions. In: Gene-Environment Transactions in Developmental Psychopathology, ed. Tolan, P. H. & Leventhal, B. L., pp. 5994. Springer. doi:10.1007/978-3-319-49227-8_4.Google Scholar
Nestler, E. J. & Hyman, S. E. (2010) Animal models of neuropsychiatric disorders. Nature Neuroscience 13(10):1161–69. Available at: https://doi.org/10.1038/nn.2647.Google Scholar
Pfenning, A. R., Hara, E., Whitney, O., Rivas, M. V., Wang, R., Roulhac, P. L., Howard, J. T., Wirthlin, M., Lovell, P. V., Ganapathy, G., Mountcastle, J., Moseley, M. A., Thompson, J. W., Soderblom, E. J., Iriki, A., Kato, M., Gilbert, M. T. P., Zhang, G., Bakken, T., Bongaarts, A., Bernard, A., Lein, E., Mello, C. V., Hartemink, A. J. & Jarvis, E. D. (2014) Convergent transcriptional specializations in the brains of humans and song-learning birds. Science 346(6215):1256846. Available at: https://doi.org/10.1126/science.1256846.Google Scholar
Striedter, G. F., Belgard, T. G., Chen, C.-C., Davis, F. P., Finlay, B. L., Güntürkün, O., Hale, M. E., Harris, J. A., Hecht, E. E., Hof, P. R., Hofmann, H. A. K., Holland, L. Z., Iwaniuk, A. N., Jarvis, E. D., Karten, H. J., Katz, P. S., Kristan, W. B., Macagno, E. R., Mitra, P. P., Moroz, L. L., Preuss, T. M., Ragsdale, C. W., Sherwood, C. C., Stevens, C. F., Stüttgen, M. C., Tsumoto, T. & Wilczynski, W. (2014) NSF workshop report: Discovering general principles of nervous system organization by comparing brain maps across species. Brain, Behavior and Evolution 83(1):18. doi:10.1159/000360152.Google Scholar
Varghese, M., Keshav, N., Jacot-Descombes, S., Warda, T., Wicinski, B., Dickstein, D. L., Harony-Nicolas, H., de Rubeis, S., Drapeau, E., Buxbaum, J. D. & Hof, P. R. (2017) Autism spectrum disorder: Neuropathology and animal models. Acta Neuropathologica 134(4):537–66. doi: 10.1007/s00401-017-1736-4.Google Scholar