Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T07:52:07.021Z Has data issue: false hasContentIssue false

The value of clinical and translational neuroscience approaches to psychiatric illness

Published online by Cambridge University Press:  06 March 2019

Juyoen Hur
Affiliation:
Department of Psychology, University of Maryland, College Park, MD 20742. [email protected]@umd.edu
Rachael M. Tillman
Affiliation:
Department of Psychology, University of Maryland, College Park, MD 20742. [email protected]@umd.edu
Andrew S. Fox
Affiliation:
Department of Psychology, University of California, Davis, CA 95616. [email protected]://foxlab.ucdavis.edu California National Primate Research Center, University of California, Davis, CA 95616.
Alexander J. Shackman
Affiliation:
Department of Psychology, University of Maryland, College Park, MD 20742. [email protected]@umd.edu Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD 20742. Maryland Neuroimaging Center, University of Maryland, College Park, MD 20742. [email protected]://shackmanlab.org1

Abstract

Borsboom et al. confuse biological approaches with extreme biological reductionism and common-cause models of psychopathology. In muddling these concepts, they mistakenly throw the baby out with the bathwater. Here, we highlight recent work underscoring the unique value of clinical and translational neuroscience approaches for understanding the nature and origins of psychopathology and for developing improved intervention strategies.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1.

This web address, http://shackmanlab.org, applies to 3 authors: Juyoen Hur, Rachael Tillman, and Alexander Shackman. Andrew Fox's different web address is given separately.

References

Bewernick, B. H., Kayser, S., Sturm, V. & Schlaepfer, T. E. (2012) Long-term effects of nucleus accumbens deep brain stimulation in treatment-resistant depression: Evidence for sustained efficacy. Neuropsychopharmacology 37:1975–85.Google Scholar
Birn, R. M., Shackman, A. J., Oler, J. A., Williams, L. E., McFarlin, D. R., Rogers, G. M., Shelton, S. E., Alexander, A. L., Pine, D. S., Slattery, M. J., Davidson, R. J., Fox, A. S. & Kalin, N. H. (2014) Evolutionarily conserved dysfunction of prefrontal-amygdalar connectivity in early-life anxiety. Molecular Psychiatry 19:915–22.Google Scholar
Birnbaum, R. & Weinberger, D. R. (2017) Genetic insights into the neurodevelopmental origins of schizophrenia. Nature Reviews Neuroscience 18:727–40.Google Scholar
Conway, C. C., Forbes, M. K., Forbush, K. T., Fried, E. I., Hallquist, M. N., Kotov, R., Mullins-Sweatt, S. N., Shackman, A. J., Skodol, A. E., South, S. C., Sunderland, M., Waszczuk, M. A., Zald, D. H., Afzali, M. H., Bornovalova, M. A., Carragher, N., Docherty, A. R., Jonas, K. G., Krueger, R. F., Patalay, P., Pincus, A. L., Tackett, J. L., Reininghaus, U., Waldman, I. D., Wright, A. G. C., Zimmerman, J., Bach, B., Bagby, R. M., Chmielewski, M., Cicero, D. C., Clark, L. A., Dalgleish, T., DeYoung, C. G., Hopwood, C. J., Ivanova, M. Y., Latzman, R. D., Patrick, C. J., Ruggero, C. J., Samuel, D. B., Watson, D. & Eaton, N. R. (2018) A hierarchical taxonomy of psychopathology can reform mental health research. Perspectives on Psychological Science. [Also in: PsyArXiv Preprints, pp. 143. Available at: https://psyarxiv.com/wsygp/].Google Scholar
Del-Ben, C. M., Ferreira, C. A., Sanchez, T. A., Alves-Neto, W. C., Guapo, V. G., de Araujo, D. B. & Graeff, F. G. (2012) Effects of diazepam on BOLD activation during the processing of aversive faces. Journal of Psychopharmacology 26:443–51.Google Scholar
Drysdale, A. T., Grosenick, L., Downar, J., Dunlop, K., Mansouri, F., Meng, Y., Fetcho, R. N., Zebley, B., Oathes, D. J., Etkin, A., Schatzberg, A. F., Sudheimer, K., Keller, J., Mayberg, H. S., Gunning, F. M., Alexopoulos, G. S., Fox, M. D., Pascual-Leone, A., Voss, H. U., Casey, B. J., Dubin, M. J. & Liston, C. (2017) Resting-state connectivity biomarkers define neurophysiological subtypes of depression. Nature Medicine 23(1):2838. doi:10.1038/nm.4246. Available at: https://www.nature.com/articles/nm.4246.Google Scholar
Evangelou, E., Warren, H. R., Mosen-Ansorena, D., Mifsud, B., Pazoki, R., Gao, H., … Caulfield, M. J. & the Million Veteran Program (2018) Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits. Nature Genetics 50:1412–25. doi:10.1038/s41588-018-0205-x.Google Scholar
Feinstein, J. S., Adolphs, R., Damasio, A. & Tranel, D. (2011) The human amygdala and the induction and experience of fear. Current Biology 21:15.Google Scholar
Fox, A. S., Oler, J. A., Birn, R. M., Shackman, A. J., Alexander, A. L. & Kalin, N. H. (2018) Functional connectivity within the primate extended amygdala is heritable and predicts early-life anxious temperament. Journal of Neuroscience 38:76117621. Available at: https://doi.org/10.1523/JNEUROSCI.0102-18.2018.Google Scholar
Fox, A. S., Oler, J. A., Shackman, A. J., Shelton, S. E., Raveendran, M., McKay, D. R., Converse, A. K., Alexander, A. L., Davidson, R. J., Blangero, J., Rogers, J. & Kalin, N. H. (2015) Intergenerational neural mediators of early-life anxious temperament. Proceedings of the National Academy of Sciences USA 112:9118–22.Google Scholar
Fox, A. S., Oler, J. A., Shelton, S. E., Nanda, S. A., Davidson, R. J., Roseboom, P. H. & Kalin, N. H. (2012) Central amygdala nucleus (Ce) gene expression linked to increased trait-like Ce metabolism and anxious temperament in young primates. Proceedings of the National Academy of Sciences USA 109:18108–13.Google Scholar
Fox, A. S. & Shackman, A. J. (in press) The central extended amygdala in fear and anxiety: Closing the gap between mechanistic and neuroimaging research. Neuroscience Letters.Google Scholar
Fried, E. I. (2015) Problematic assumptions have slowed down depression research: Why symptoms, not syndromes are the way forward. Frontiers in Psychology 6: article 309. (Online publication). doi: 10.3389/fpsyg.2015.00309. Available at: https://www.frontiersin.org/articles/10.3389/fpsyg.2015.00309/full.Google Scholar
Fried, E. I. & Nesse, R. M. (2015) Depression is not a consistent syndrome: An investigation of unique symptom patterns in the STAR*D study. Journal of Affective Disorders 172:96102.Google Scholar
Galatzer-Levy, I. R. & Bryant, R. A. (2013) 636,120 Ways to have posttraumatic stress disorder. Perspectives on Psychological Science 8(6):651–62. Available at: https://doi.org/10.1177/1745691613504115.Google Scholar
Gandal, M. J., Leppa, V., Won, H., Parikshak, N. N. & Geschwind, D. H. (2016) The road to precision psychiatry: Translating genetics into disease mechanisms. Nature Neuroscience 19(11):1397–407. doi: 10.1038/nn.4409.Google Scholar
Geschwind, D. H. & Flint, J. (2015) Genetics and genomics of psychiatric disease. Science 349(6255):1489–94. doi: 10.1126/science.aaa8954.Google Scholar
Global Burden of Disease Collaborators (2016) Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015. The Lancet 388:1545–602.Google Scholar
Gordon, J. A. & Redish, A. D. (2016) On the cusp. Current challenges and promises in psychiatry. In: Computational psychiatry: New perspectives on mental illness, ed. Redish, A. D. & Gordon, J. A., pp. 314. MIT Press.Google Scholar
Greer, S. M., Trujillo, A. J., Glover, G. H. & Knutson, B. (2014) Control of nucleus accumbens activity with neurofeedback. Neuroimage 96:237–44.Google Scholar
Hasin, D. S., Shmulewitz, D., Stohl, M., Greenstein, E., Aivadyan, C., Morita, K., Saha, T., Aharonovich, E., Jung, J., Zhang, H., Nunes, E. V. & Grant, B. F. (2015) Procedural validity of the AUDADIS-5 depression, anxiety and post-traumatic stress disorder modules: Substance abusers and others in the general population. Drug and Alcohol Dependence 152:246–56.Google Scholar
Inman, C. S., Bijanki, K. R., Bass, D. I., Gross, R. E., Hamann, S. & Willie, J. T. (in press) Human amygdala stimulation effects on emotion physiology and emotional experience. Neuropsychologia.Google Scholar
Kalin, N. H., Fox, A. S., Kovner, R., Riedel, M. K., Fekete, E. M., Roseboom, P. H., Tromp, D. P., Grabow, B. P., Olsen, M. E., Brodsky, E. K., McFarlin, D. R., Alexander, A. L., Emborg, M. E., Block, W. F., Fudge, J. L. & Oler, J. A. (2016) Overexpressing corticotropin-releasing hormone in the primate amygdala increases anxious temperament and alters its neural circuit. Biological Psychiatry 80:345–55.Google Scholar
Kendler, K. S. (2012b) The dappled nature of causes of psychiatric illness: Replacing the organic-functional/hardware-software dichotomy with empirically based pluralism. Molecular Psychiatry 17:377–88.Google Scholar
Kessler, R. C., Chiu, W. T., Demler, O. & Walters, E. E. (2005) Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replication. Archives of General Psychiatry 62:617–27.Google Scholar
Kotov, R., Krueger, R. F., Watson, D., Achenbach, T. M., Althoff, R. R., Bagby, R. M., Brown, T. A., Carpenter, W. T., Caspi, A., Clark, L. A., Eaton, N. R., Forbes, M. K., Forbush, K. T., Goldberg, D., Hasin, D., Hyman, S. E., Ivanova, M. Y., Lynam, D. R., Markon, K., Miller, J. D., Moffitt, T. E., Morey, L. C., Mullins-Sweatt, S. N., Ormel, J., Patrick, C. J., Regier, D. A., Rescorla, L., Ruggero, C. J., Samuel, D. B., Sellbom, M., Simms, L. J., Skodol, A. E., Slade, T., South, S. C., Tackett, J. L., Waldman, I. D., Waszczuk, M. A., Widiger, T. A., Wright, A. G. C. & Zimmerman, M. (2017) The hierarchical taxonomy of psychopathology (HiTOP): A dimensional alternative to traditional nosologies. Journal of Abnormal Psychology 126:454–77.Google Scholar
Koutsouleris, N., Kambeitz-Ilankovic, L., Ruhrmann, S., Rosen, M., Ruef, A., Dwyer, D. B., Paolini, M., Chisholm, K., Kambeitz, J., Haidl, T., Schmidt, A., Gillam, J., Schultze-Lutter, F., Falkai, P., Reiser, M., Riecher-Rössler, A., Upthegrove, R., Hietala, J., Salokangas, R. K. R., Pantelis, C., Meisenzahl, E., Wood, S. J., Beque, D., Brambilla, P., Borgwardt, S. & PRONIA Consortium. (2018) Prediction models of functional outcomes for individuals in the clinical high-risk state for psychosis or with recent-onset depression: A multimodal, multisite machine learning analysis. JAMA Psychiatry 75(11):1156–72. doi:10.1001/jamapsychiatry.2018.2165.Google Scholar
Kozak, M. J. & Cuthbert, B. N. (2016) The NIMH research domain criteria initiative: Background, issues, and pragmatics. Psychophysiology 53:286–97.Google Scholar
Lilienfeld, S. O. (2014) The Research Domain Criteria (RDoC): An analysis of methodological and conceptual challenges. Behaviour Research and Therapy 62:129–39.Google Scholar
Miller, G. A. (2010) Mistreating psychology in the decades of the brain. Perspectives on Psychological Science 5(6):716–43.Google Scholar
Nugent, A. C., Diazgranados, N., Carlson, P. J., Ibrahim, L., Luckenbaugh, D. A., Brutsche, N., Herscovitch, P., Drevets, W. C. & Zarate, C. A. Jr. (2014) Neural correlates of rapid antidepressant response to ketamine in bipolar disorder. Bipolar Disorders 16:119–28.Google Scholar
Olbert, C. M., Gala, G. J. & Tupler, L. A. (2014) Quantifying heterogeneity attributable to polythetic diagnostic criteria: Theoretical framework and empirical application. Journal of Abnormal Psychology 123(2):452–62.Google Scholar
Oler, J. A., Fox, A. S., Shackman, A. J. & Kalin, N. H. (2016) The central nucleus of the amygdala is a critical substrate for individual differences in anxiety. In: Living without an amygdala, ed. Amaral, D. G. & Adolphs, R., pp. 218–51. Guilford Press.Google Scholar
Pankevich, D. E., Altevogt, B. M., Dunlop, J., Gage, F. H. & Hyman, S. E. (2014) Improving and accelerating drug development for nervous system disorders. Neuron 84:546–53.Google Scholar
Pizzagalli, D. A. (2014) Depression, stress, and anhedonia: Toward a synthesis and integrated model. The Annual Review of Clinical Psychology 10:393423.Google Scholar
Regier, D. A., Narrow, W. E., Clarke, D. E., Kraemer, H. C., Kuramoto, S. J., Kuhl, E. A. & Kupfer, D. J. (2013) DSM-5 field trials in the United States and Canada, Part II: Test-retest reliability of selected categorical diagnoses. American Journal of Psychiatry 170:5970.Google Scholar
Roseboom, P. H., Nanda, S. A., Fox, A. S., Oler, J. A., Shackman, A. J., Shelton, S. E., Davidson, R. J. & Kalin, N. H. (2014) Neuropeptide Y receptor gene expression in the primate amygdala predicts anxious temperament and brain metabolism. Biological Psychiatry 76:850–57.Google Scholar
Schlaepfer, T. E., Cohen, M. X., Frick, C., Kosel, M., Brodesser, D., Axmacher, N., Joe, A. Y., Kreft, M., Lenartz, D. & Sturm, V. (2008) Deep brain stimulation to reward circuitry alleviates anhedonia in refractory major depression. Neuropsychopharmacology 33:368–77.Google Scholar
Shackman, A. J. & Fox, A. S. (2018) Getting serious about variation: Lessons for clinical neuroscience. Trends in Cognitive Sciences 22:368–69.Google Scholar
Shackman, A. J., Fox, A. S., Oler, J. A., Shelton, S. E., Davidson, R. J. & Kalin, N. H. (2013) Neural mechanisms underlying heterogeneity in the presentation of anxious temperament. Proceedings of the National Academy of Sciences USA 110:6145–50.Google Scholar
Shackman, A. J., Kaplan, C. M., Stockbridge, M. D., Tillman, R. M., Tromp, D. P. M., Fox, A. S. & Gamer, M. (2016a) The neurobiology of anxiety and attentional biases to threat: Implications for understanding anxiety disorders in adults and youth. Journal of Experimental Psychopathology 7:311–42.Google Scholar
Shackman, A. J., Tromp, D. P. M., Stockbridge, M. D., Kaplan, C. M., Tillman, R. M. & Fox, A. S. (2016b) Dispositional negativity: An integrative psychological and neurobiological perspective. Psychological Bulletin 142:1275–314.Google Scholar
Stringaris, A., Vidal-Ribas Belil, P., Artiges, E., Lemaitre, H., Gollier-Briant, F., Wolke, S., Vulser, H., Miranda, R., Penttila, J., Struve, M., Fadai, T., Kappel, V., Grimmer, Y., Goodman, R., Poustka, L., Conrod, P., Cattrell, A., Banaschewski, T., Bokde, A. L., Bromberg, U., Buchel, C., Flor, H., Frouin, V., Gallinat, J., Garavan, H., Gowland, P., Heinz, A., Ittermann, B., Nees, F., Papadopoulos, D., Paus, T., Smolka, M. N., Walter, H., Whelan, R., Martinot, J. L., Schumann, G., Paillere-Martinot, M. L. & the IMAGEN Consortium (2015) The brain's response to reward anticipation and depression in adolescence: Dimensionality, specificity, and longitudinal predictions in a community-based sample. American Journal of Psychiatry 172:1215–23.Google Scholar
Turkheimer, E. (1998) Heritability and biological explanation. Psychological Review 105:782–91.Google Scholar
U.S. Burden of Disease Collaborators (2018) The state of US health, 1990–2016. Burden of diseases, injuries, and risk factors among US states. Journal of the American Medical Association (JAMA) 319:1444–72.Google Scholar
Waszczuk, M. A., Zimmerman, M., Ruggero, C., Li, K., MacNamara, A., Weinberg, A., Hajcak, G., Watson, D. & Kotov, R. (2017) What do clinicians treat: Diagnoses or symptoms? The incremental validity of a symptom-based, dimensional characterization of emotional disorders in predicting medication prescription patterns. Comprehensive Psychiatry 79:8088.Google Scholar
Watson, D. & Stasik, S. M. (2014) Examining the comorbidity between depression and the anxiety disorders from the perspective of the quadripartite model. In: Oxford handbook of depression and comorbidity, ed. Richards, C. S. & O'Hara, M. W., pp. 4665. Oxford University Press.Google Scholar
Woo, C. W., Chang, L. J., Lindquist, M. A. & Wager, T. D. (2017) Building better biomarkers: Brain models in translational neuroimaging. Nature Neuroscience 20:365–77.Google Scholar
Zhu, X., Need, A. C., Petrovski, S. & Goldstein, D. B. (2014) One gene, many neuropsychiatric disorders: Lessons from Mendelian diseases. Nature Neuroscience 17:773–81.Google Scholar