Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-28T13:24:08.635Z Has data issue: false hasContentIssue false

Mirror neurons: From origin to function

Published online by Cambridge University Press:  29 April 2014

Richard Cook
Affiliation:
Department of Psychology, City University London, London EC1R 0JD, United Kingdom. [email protected]://www.city.ac.uk/people/academics/richard-cook
Geoffrey Bird
Affiliation:
MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, London SE5 8AF, United Kingdom. [email protected]://sites.google.com/site/geoffbirdlab/http://www.iop.kcl.ac.uk/staff/profile/default.aspx?go=13152
Caroline Catmur
Affiliation:
Department of Psychology, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom. [email protected]://www.surrey.ac.uk/psychology/people/dr_caroline_catmur/http://sites.google.com/site/carolinecatmur/
Clare Press
Affiliation:
Department of Psychological Sciences, Birkbeck College, University of London, London WC1E 7HX, United Kingdom. [email protected]://www.bbk.ac.uk/psychology/actionlab/http://www.bbk.ac.uk/psychology/our-staff/academic/dr-clare-press
Cecilia Heyes
Affiliation:
All Souls College, University of Oxford, Oxford, OX1 4AL, and Department of Experimental Psychology, University of Oxford, Oxford OX1 3UD, United Kingdom. [email protected]://www.all-souls.ox.ac.uk/users/heyesc/

Abstract

This article argues that mirror neurons originate in sensorimotor associative learning and therefore a new approach is needed to investigate their functions. Mirror neurons were discovered about 20 years ago in the monkey brain, and there is now evidence that they are also present in the human brain. The intriguing feature of many mirror neurons is that they fire not only when the animal is performing an action, such as grasping an object using a power grip, but also when the animal passively observes a similar action performed by another agent. It is widely believed that mirror neurons are a genetic adaptation for action understanding; that they were designed by evolution to fulfill a specific socio-cognitive function. In contrast, we argue that mirror neurons are forged by domain-general processes of associative learning in the course of individual development, and, although they may have psychological functions, they do not necessarily have a specific evolutionary purpose or adaptive function. The evidence supporting this view shows that (1) mirror neurons do not consistently encode action “goals”; (2) the contingency- and context-sensitive nature of associative learning explains the full range of mirror neuron properties; (3) human infants receive enough sensorimotor experience to support associative learning of mirror neurons (“wealth of the stimulus”); and (4) mirror neurons can be changed in radical ways by sensorimotor training. The associative account implies that reliable information about the function of mirror neurons can be obtained only by research based on developmental history, system-level theory, and careful experimentation.

Type
Target Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anisfeld, M. (1996) Only tongue protrusion modeling is matched by neonates. Developmental Review 16(2):149–61.Google Scholar
Arbib, M. A. (2005) From monkey-like action recognition to human language: An evolutionary framework for neurolinguistics. Behavioral and Brain Sciences 28(2):105–24; discussion 125–67.Google Scholar
Arbib, M. A. & Mundhenk, T. N. (2005) Schizophrenia and the mirror system: An essay. Neuropsychologia 43(2):268–80.CrossRefGoogle ScholarPubMed
Arnstein, D., Cui, F., Keysers, C., Maurits, N. M. & Gazzola, V. (2011) μ-suppression during action observation and execution correlates with BOLD in dorsal premotor, inferior parietal, and SI cortices. Journal of Neuroscience 31(40):14243–49. doi: 10.1523/JNEUROSCI.0963-11.2011.Google Scholar
Avenanti, A., Bueti, D., Galati, G. & Aglioti, S. M. (2005) Transcranial magnetic stimulation highlights the sensorimotor side of empathy for pain. Nature Neuroscience 8(7):955–60.Google Scholar
Aziz-Zadeh, L., Koski, L., Zaidel, E., Mazziotta, J. & Iacoboni, M. (2006a) Lateralization of the human mirror neuron system. Journal of Neuroscience 26(11):2964–70.Google Scholar
Aziz-Zadeh, L., Wilson, S. M., Rizzolatti, G. & Iacoboni, M. (2006b) Congruent embodied representations for visually presented actions and linguistic phrases describing actions. Current Biology 16(18):1818–23.Google Scholar
Barchiesi, G. & Cattaneo, L. (2013) Early and late motor responses to action observation. Social Cognitive and Affective Neuroscience 8(6):711–19.Google Scholar
Beardsworth, T. & Buckner, T. (1981) The ability to recognize oneself from a video recording of one's movements without seeing one's body. Bulletin of the Psychonomic Society 18(1):1922.Google Scholar
Blakemore, S. J. & Frith, C. (2005) The role of motor contagion in the prediction of action. Neuropsychologia 43(2):260–67.Google Scholar
Blakesee, S. (2006) Cells that read minds. The New York Times, January 10, 2006. (Online) Available at: http://www.nytimes.com/2006/01/10/science/10mirr.html.Google Scholar
Bonini, L. & Ferrari, P. F. (2011) Evolution of mirror systems: A simple mechanism for complex cognitive functions. Annals of the New York Academy of Sciences 1225:166–75. doi: 10.1111/j.1749-6632.2011.06002.x.Google Scholar
Bonini, L., Rozzi, S., Serventi, F. U., Simone, L., Ferrari, P. F. & Fogassi, L. (2010) Ventral premotor and inferior parietal cortices make distinct contribution to action organization and intention understanding. Cerebral Cortex 20(6):1372–85.CrossRefGoogle ScholarPubMed
Bouton, M. E. (1993) Context, time, and memory retrieval in the interference paradigms of Pavlovian learning. Psychological Bulletin 114(1):8099.Google Scholar
Bouton, M. E. (1994) Context, ambiguity, and classical-conditioning. Current Directions in Psychological Science 3(2):4953.Google Scholar
Brass, M., Bekkering, H. & Prinz, W. (2001) Movement observation affects movement execution in a simple response task. Acta Psychologica (Amsterdam) 106(1–2):322.Google Scholar
Brass, M., Schmitt, R. M., Spengler, S. & Gergely, G. (2007) Investigating action understanding: Inferential processes versus action simulation. Current Biology 17(24):2117–21.CrossRefGoogle ScholarPubMed
Brown, E. C. & Brüne, M. (2012) The role of prediction in social neuroscience. Frontiers in Human Neuroscience 6:147. doi:10.3389/Fnhum.2012.00147.Google Scholar
Buccino, G., Vogt, S., Ritzl, A., Fink, G. R., Zilles, K., Freund, H. J. & Rizzolatti, G. (2004) Neural circuits underlying imitation learning of hand actions: An event-related fMRI study. Neuron 42(2):323–34.Google Scholar
Buxbaum, L. J., Kyle, K. M. & Menon, R. (2005) On beyond mirror neurons: Internal representations subserving imitation and recognition of skilled object-related actions in humans. Cognitive Brain Research 25(1):226–39.Google Scholar
Caggiano, V., Fogassi, L., Rizzolatti, G., Casile, A., Giese, M. A. & Thier, P. (2012) Mirror neurons encode the subjective value of an observed action. Proceedings of the National Academy of Sciences USA 109(29):11848–53.Google Scholar
Caggiano, V, Fogassi, L, Rizzolatti, G., Pomper, J. K., Thier, P., Giese, M. A. & Casile, A. (2011) View-based encoding of actions in mirror neurons of area F5 in macaque premotor cortex. Current Biology 21(2):144–48.Google Scholar
Caggiano, V., Fogassi, L., Rizzolatti, G., Thier, P. & Casile, A. (2009) Mirror neurons differentially encode the peripersonal and extrapersonal space of monkeys. Science 324(5925):403406.CrossRefGoogle ScholarPubMed
Caggiano, V., Pomper, K., Fleischer, F., Fogassi, L., Giese, M. & Thier, P. (2013) Mirror neurons in monkey area F5 do not adapt to the observation of repeated actions. Nature Communications 4:1433.Google Scholar
Calder, A. J., Keane, J., Cole, J., Campbell, R. & Young, A. W. (2000) Facial expression recognition by people with mobius syndrome. Cognitive Neuropsychology 17(1):7387.Google Scholar
Calvo-Merino, B., Glaser, D. E., Grèzes, J., Passingham, R. E. & Haggard, P. (2005) Action observation and acquired motor skills: An fMRI study with expert dancers. Cerebral Cortex 15(8):1243–49.Google Scholar
Calvo-Merino, B., Grèzes, J., Glaser, D. E., Passingham, R. E. & Haggard, P. (2006) Seeing or doing? Influence of visual and motor familiarity in action observation. Current Biology 16(19):1905–10.Google Scholar
Calvo-Merino, B., Urgesi, C., Orgs, G., Aglioti, S. M. & Haggard, P. (2010) Extrastriate body area underlies aesthetic evaluation of body stimuli. Experimental Brain Research 204(3):447–56.Google Scholar
Candidi, M., Urgesi, C., Ionta, S. & Aglioti, S. M. (2008) Virtual lesion of ventral premotor cortex impairs visual perception of biomechanically possible but not impossible actions. Social Neuroscience 3(3–4):388400.Google Scholar
Carr, L., Iacoboni, M., Dubeau, M. C., Mazziotta, J. C. & Lenzi, G. L. (2003) Neural mechanisms of empathy in humans: A relay from neural systems for imitation to limbic areas. Proceedings of the National Academy of Sciences USA 100(9):5497–502.Google Scholar
Casile, A., Caggiano, V. & Ferrari, P. F. (2011) The mirror neuron system: A fresh view. Neuroscientist 17(5):524–38. doi: 10.1177/1073858410392239.Google Scholar
Casile, A. & Giese, M. A. (2006) Nonvisual motor training influences biological motion perception. Current Biology 16(1):6974. doi:10.1016/j.cub.2005.10.071.Google Scholar
Caspers, S., Zilles, K., Laird, A. R. & Eickhoff, S. B. (2010) ALE meta-analysis of action observation and imitation in the human brain. Neuroimage 50(3):1148–67.Google Scholar
Catmur, C., Gillmeister, H., Bird, G., Liepelt, R., Brass, M. & Heyes, C. M. (2008) Through the looking glass: Counter-mirror activation following incompatible sensorimotor learning. European Journal of Neuroscience 28(6):1208–15.CrossRefGoogle ScholarPubMed
Catmur, C., Mars, R. B., Rushworth, M. F. & Heyes, C. M. (2011) Making mirrors: Premotor cortex stimulation enhances mirror and counter-mirror motor facilitation. Journal of Cognitive Neuroscience 23:2352–62.Google Scholar
Catmur, C., Walsh, V. & Heyes, C. M. (2007) Sensorimotor learning configures the human mirror system. Current Biology 17(17):1527–31.Google Scholar
Catmur, C., Walsh, V. & Heyes, C. M. (2009) Associative sequence learning: The role of experience in the development of imitation and the mirror system. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences 364(1528):2369–80.Google Scholar
Cattaneo, L., Barchiesi, G., Tabarelli, D., Arfeller, C., Sato, M. & Glenberg, A. M. (2011) One's motor performance predictably modulates the understanding of others' actions through adaptation of premotor visuo-motor neurons. Social Cognitive and Affective Neuroscience 6(3):301–10.Google Scholar
Cavallo, A., Heyes, C., Becchio, C., Bird, G. & Catmur, C. (2013) Timecourse of mirror and counter-mirror effects measured with transcranial magnetic stimulation. Social Cognitive and Affective Neuroscience. (Published Online, May 2013). doi:10.1093/scan/nst085.Google Scholar
Chomsky, N. (1975) Reflections on language. Pantheon Books.Google Scholar
Chong, T. T. J., Cunnington, R., Williams, M. A., Kanwisher, N. & Mattingley, J. B. (2008) fMRI adaptation reveals mirror neurons in human inferior parietal cortex. Current Biology 18(20):1576–80.Google Scholar
Cinzia, D. D. & Gallese, V. (2009) Neuroaesthetics: A review. Current Opinion in Neurobiology 19(6):682–87.Google Scholar
Clifton, R. K., Rochat, P., Robin, D. J. & Bertheir, N. E. (1994) Multimodal perception in the control of infant reaching. Journal of Experimental Psychology: Human Perception and Performance 20(4):876–86.Google Scholar
Cohen, D. A. (2008) Neurophysiological pathways to obesity: Below awareness and beyond individual control. Diabetes 57(7):1768–73.Google Scholar
Cook, R. (2012) The ontogenetic origins of mirror neurons: Evidence from “tool-use” and “audiovisual” mirror neurons. Biology Letters 8(5):856–59. doi: 10.1098/rsbl.2012.0192.Google Scholar
Cook, R., Dickinson, A. & Heyes, C. (2012a) Contextual modulation of mirror and countermirror sensorimotor associations. Journal of Experimental Psychology: General 141(4):774–87.Google Scholar
Cook, R., Johnston, A. & Heyes, C. (2012b) Self-recognition of avatar motion: How do I know it's me? Proceedings of the Royal Society B-Biological Sciences 279(1729):669–74.Google Scholar
Cook, R., Johnston, A. & Heyes, C. (2013) Facial self-imitation: Objective measurement reveals no improvement without visual feedback. Psychological Science 24(1):9398.Google Scholar
Cook, R., Press, C., Dickinson, A. & Heyes, C. (2010) Acquisition of automatic imitation is sensitive to sensorimotor contingency. Journal of Experimental Psychology: Human Perception and Performance 36(4):840–52.Google ScholarPubMed
Cooper, R. P., Cook, R., Dickinson, A. & Heyes, C. M. (2013b) Associative (not Hebbian) learning and the mirror neuron system. Neuroscience Letters 540:2836.Google Scholar
Corina, D. P. & Knapp, H. (2006) Sign language processing and the mirror neuron system. Cortex 42(4):529–39.Google Scholar
Cosmides, L. & Tooby, J. (1994) Beyond intuition and instinct blindness: Toward an evolutionary rigorous cognitive science. Cognition 50:4177.Google Scholar
Cross, E. S., de Hamilton, A. F. & Grafton, S. T. (2006) Building a motor simulation de novo: Observation of dance by dancers. Neuroimage 31(3):1257–67.Google Scholar
Cross, E. S., Hamilton, A. F., Kraemer, D. J., Kelley, W. M. & Grafton, S. T. (2009) Dissociable substrates for body motion and physical experience in the human action observation network. European Journal of Neuroscience 30(7):1383–92.Google Scholar
Dapretto, M., Davies, M. S., Pfeifer, J. H., Scott, A. A., Sigman, M., Bookheimer, S. Y. & Iacoboni, M. (2006) Understanding emotions in others: Mirror neuron dysfunction in children with autism spectrum disorders. Nature Neuroscience 9(1):2830.CrossRefGoogle ScholarPubMed
D'Ausilio, A., Altenmüller, E., Olivetti Belardinelli, M. & Lotze, M. (2006) Cross-modal plasticity of the motor cortex while listening to a rehearsed musical piece. European Journal of Neuroscience 24(3):955–58.Google Scholar
de Lange, F. P., Spronk, M., Willems, R. M., Toni, I. & Bekkering, H. (2008) Complementary systems for understanding action intentions. Current Biology 18(6):454–57.Google Scholar
Del Giudice, M., Manera, V. & Keysers, C. (2009) Programmed to learn? The ontogeny of mirror neurons. Developmental Science 12(2):350–63. doi: 10.1111/j.1467-7687.2008.00783.x.Google Scholar
Derryberry, E. P., Seddon, N., Claramunt, S., Tobias, J. A., Baker, A., Aleixo, A. & Brumfield, R. T. (2012) Correlated evolution of beak morphology and song in the Neotropical woodcreeper radiation. Evolution 66(9):2784–97.CrossRefGoogle Scholar
Dinstein, I., Thomas, C., Behrmann, M. & Heeger, D. J. (2008b) A mirror up to nature. Current Biology 18(1):R1318.Google Scholar
di Pellegrino, G., Fadiga, L., Fogassi, L., Gallese, V. & Rizzolatti, G. (1992) Understanding motor events: A neurophysiological study. Experimental Brain Research 91(1):176–80.Google Scholar
Dushanova, J. & Donoghue, J. (2010) Neurons in primary motor cortex engaged during action observation. European Journal of Neuroscience 31(2):386–98.Google Scholar
Dyer, A. G., Neumeyer, C. & Chittka, L. (2005) Honeybee (Apis mellifera) vision can discriminate between and recognise images of human faces. Journal of Experimental Biology 208(24):4709–14.Google Scholar
Elman, J. L., Bates, E. A., Johnson, M. H., Karmiloff-Smith, A., Parisi, D. & Plunkett, K. (1996) Rethinking innateness: A connectionist perspective on development. MIT Press.Google Scholar
Elsner, B. & Hommel, B. (2004) Contiguity and contingency in action-effect learning. Psychological Research 68(2–3):138–54.Google Scholar
Enticott, P. G., Johnston, P. J., Herring, S. E., Hoy, K. E. & Fitzgerald, P. B. (2008) Mirror neuron activation is associated with facial emotion processing. Neuropsychologia 46(11):2851–54.Google Scholar
Fadiga, L., Fogassi, L., Pavesi, G. & Rizzolatti, G. (1995) Motor facilitation during action observation: A magnetic stimulation study. Journal of Neurophysiology 73(6):2608–11.Google Scholar
Fanelli, D. (2012) Negative results are disappearing from most disciplines and countries. Scientometrics 90(3):891904.Google Scholar
Felleman, D. J. & Van Essen, D. C. (1991) Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex 1(1):147.Google Scholar
Ferrari, P. F., Gallese, V., Rizzolatti, G. & Fogassi, L. (2003) Mirror neurons responding to the observation of ingestive and communicative mouth actions in the monkey ventral premotor cortex. European Journal of Neuroscience 17(8):1703–14.Google Scholar
Ferrari, P. F., Bonini, L. & Fogassi, L. (2009a) From monkey mirror neurons to primate behaviours: Possible “direct” and “indirect” pathways. Philosophical Transactions of the Royal Society B: Biological Sciences 364(1528):2311–23.Google Scholar
Ferrari, P. F., Rozzi, S. & Fogassi, L. (2005) Mirror neurons responding to observation of actions made with tools in monkey ventral premotor cortex. Journal of Cognitive Neuroscience 17(2):212–26.Google Scholar
Ferrari, P. F., Vanderwert, R. E., Paukner, A., Bower, S., Suomi, S. J. & Fox, N. A. (2012) Distinct EEG amplitude suppression to facial gestures as evidence for a mirror mechanism in newborn monkeys. Journal of Cognitive Neuroscience 24(5):1165–72. doi: 10.1162/jocn_a_00198.Google Scholar
Ferrari, P. F., Visalberghi, E., Paukner, A., Fogassi, L., Ruggiero, A. & Suomi, S. J. (2006) Neonatal imitation in rhesus macaques. PLoS Biology 4(9):1501–508, e302. doi: 10.1371/journal.pbio.0040302.Google Scholar
Fogassi, L., Ferrari, P. F., Gesierich, B., Rozzi, S., Chersi, F. & Rizzolatti, G. (2005) Parietal lobe: From action organization to intention understanding. Science 308(5722):662–67.Google Scholar
Fontana, A. P., Kilner, J. M., Rodrigues, E. C., Joffily, M., Nighoghossian, N., Vargas, C. D. & Sirigu, A. (2011) Role of the parietal cortex in predicting incoming actions. Neuroimage 59(1):556–64.Google Scholar
Gallese, V., Fadiga, L., Fogassi, L. & Rizzolatti, G. (1996) Action recognition in the premotor cortex. Brain 119 (Part 2):593609.Google Scholar
Gallese, V., Fadiga, L., Fogassi, L. & Rizzolatti, G. (2002) Action representation and the inferior parietal lobule. In: Common mechanisms in perception and action: Attention and performance XIX, ed. Prinz, W. & Hommel, B., pp. 247–66. Oxford University Press.Google Scholar
Gallese, V., Gernsbacher, M., Hickok, G., Heyes, C. & Iacoboni, M. (2011) Mirror neuron forum Perspectives on Psychological Science 6(4):369407.Google Scholar
Gallese, V. & Goldman, A. (1998) Mirror neurons and the simulation theory of mind-reading. Trends in Cognitive Sciences 2(12):493501.Google Scholar
Gallese, V., Rochat, M., Cossu, G. & Sinigaglia, C. (2009) Motor cognition and its role in the phylogeny and ontogeny of intentional understanding. Developmental Psychology 45(1):103–13.Google Scholar
Gallese, V. & Sinigaglia, C. (2011) What is so special about embodied simulation? Trends in Cognitive Sciences 15(11):512–19.Google Scholar
Gazzola, V. & Keysers, C. (2009) The observation and execution of actions share motor and somatosensory voxels in all tested subjects: Single-subject analyses of unsmoothed fMRI data. Cerebral Cortex 19(6):1239–55.Google Scholar
Giese, M. A. & Poggio, T. (2003) Neural mechanisms for the recognition of biological movements. Nature Reviews Neuroscience 4(3):179–92.CrossRefGoogle ScholarPubMed
Gilbert, S. F. (2003) Evo-devo, devo-evo, and devgen-popgen. Biology and Philosophy 18(2):347–52.Google Scholar
Gillmeister, H., Catmur, C., Liepelt, R., Brass, M. & Heyes, C. (2008) Experience-based priming of body parts: A study of action imitation. Brain Research 1217:157–70.Google Scholar
Glenberg, A. (2011) Introduction to the Mirror Neuron Forum. Perspectives on Psychological Science 8(4):363–68.Google Scholar
Glenberg, A., Sato, M., Cattaneo, L., Riggio, L., Palumbo, D. & Buccino, G. (2008) Processing abstract language modulates motor system activity. The Quarterly Journal of Experimental Psychology 61(6):905–19.Google Scholar
Goldenberg, G. & Karnath, H. O. (2006) The neural basis of imitation is body part specific. Journal of Neuroscience 26(23):6282–87.Google Scholar
Gottlieb, G. (1976) The roles of experience in the development of behavior and the nervous system. In: Neural and behavioral plasticity, ed. Gottlieb, G., pp. 2454. Academic Press.Google Scholar
Grèzes, J., Armony, J. L., Rowe, J. & Passingham, R. E. (2003) Activations related to “mirror” and “canonical” neurones in the human brain: An fMRI study. Neuroimage 18(4):928–37.Google Scholar
Gridley, M. C. & Hoff, R. (2006) Do mirror neurons explain misattribution of emotions in music? Perceptual and Motor Skills 102(2):600602.Google Scholar
Grill-Spector, K., Henson, R. & Martin, A. (2006) Repetition and the brain: Neural models of stimulus-specific effects. Trends in Cognitive Sciences 10(1):1423.Google Scholar
Grosbras, M. H., Beaton, S. & Eickhoff, S. B. (2012) Brain regions involved in human movement perception: A quantitative voxel-based meta-analysis. Human Brain Mapping 33(2):431–54.CrossRefGoogle ScholarPubMed
Halsband, U., Schmitt, J., Weyers, M., Binkofski, F., Grutzner, G. & Freund, H. J. (2001) Recognition and imitation of pantomimed motor acts after unilateral parietal and premotor lesions: A perspective on apraxia. Neuropsychologia 39(2):200–16.Google Scholar
Hari, R. & Salmelin, R. (1997) Human cortical oscillations: A neuromagnetic view through the skull. Trends in Neurosciences 20(1):4449.Google Scholar
Haslinger, B., Erhard, P., Altenmuller, E., Schroeder, U., Boecker, H. & Ceballos-Baumann, A. O. (2005) Transmodal sensorimotor networks during action observation in professional pianists. Journal of Cognitive Neuroscience 17(2):282–93.Google Scholar
Hecht, H., Vogt, S. & Prinz, W. (2001) Motor learning enhances perceptual judgment: A case for action-perception transfer. Psychological Research 65(1):314.Google Scholar
Heimann, M., Nelson, K. E. & Schaller, J. (1989) Neonatal imitation of tongue protrusion and mouth opening: Methodological aspects and evidence of early individual differences. Scandinavian Journal of Psychology 30(2):90101.Google Scholar
Heiser, M., Iacoboni, M., Maeda, F., Marcus, J. & Mazziotta, J. C. (2003) The essential role of Broca's area in imitation. European Journal of Neuroscience 17(5):1123–28.Google Scholar
Heyes, C. M. (2010) Where do mirror neurons come from? Neuroscience and Biobehavioral Reviews 34(4):575–83.Google Scholar
Heyes, C. M. (2011) Automatic imitation. Psychological Bulletin 137(3):463–83.Google Scholar
Heyes, C. M. (2012b) Simple minds: A qualified defence of associative learning. Philosophical Transactions of the Royal Society B: Biological Sciences 367(1603):2695–703.Google Scholar
Heyes, C. & Bird, G. (2007) Mirroring, association and the correspondence problem. In: Sensorimotor foundations of higher cognition: Attention and performance XX, ed. Haggard, P., Rosetti, Y. & Kawato, M., pp. 461–79. Oxford University Press.Google Scholar
Heyes, C., Bird, G., Johnson, H. & Haggard, P. (2005) Experience modulates automatic imitation. Cognitive Brain Research 22(2):233–40.Google Scholar
Hickok, G. (2009) Eight problems for the mirror neuron theory of action understanding in monkeys and humans. Journal of Cognitive Neuroscience 21(7):1229–43.Google Scholar
Iacoboni, M. (2008) Mesial frontal cortex and super mirror neurons. Behavioral and Brain Sciences 31:30.Google Scholar
Iacoboni, M. (2009) Imitation, empathy, and mirror neurons. Annual Review of Psychology 60:653–70.Google Scholar
Iacoboni, M., Molnar-Szakacs, I., Gallese, V., Buccino, G., Mazziotta, J. C. & Rizzolatti, G. (2005) Grasping the intentions of others with one's own mirror neuron system. PLoS Biology 3(3):529–35; e79. doi:10.1371/journal.pbio.0030079.Google Scholar
Iacoboni, M., Woods, R. P., Brass, M., Bekkering, H., Mazziotta, J. C. & Rizzolatti, G. (1999) Cortical mechanisms of human imitation. Science 286(5449):2526–28.Google Scholar
Jackson, P. L., Meltzoff, A. N. & Decety, J. (2006) Neural circuits involved in imitation and perspective-taking. Neuroimage 31(1):429–39.Google Scholar
Jeannerod, M. (1994) The representing brain. Neural correlates of motor intention and imagery. Behavioral and Brain Sciences 17:187245.Google Scholar
Jones, S. S. (1996) Imitation or exploration? Young infants' matching of adults' oral gestures. Child Development 67(5):1952–69.Google Scholar
Jones, S. S. (2006) Exploration or imitation? The effect of music on 4-week-old infants' tongue protrusions. Infant Behavior and Development 29(1):126–30.Google Scholar
Jones, S. S. (2009) The development of imitation in infancy. Philosophical Transactions of the Royal Society B: Biological Sciences 364(1528):2325–35.Google Scholar
Kalenine, S., Buxbaum, L. J. & Coslett, H. B. (2010) Critical brain regions for action recognition: Lesion symptom mapping in left hemisphere stroke. Brain 133(11):3269–80.Google Scholar
Kappes, J., Baumgaertner, A., Peschke, C., Goldenberg, G. & Ziegler, W. (2010) Imitation of para-phonological detail following left hemisphere lesions. Neuropsychologia 48(4):1115–24.Google Scholar
Keysers, C. (2009) Mirror neurons. Current Biology 19(21):R971–73.Google Scholar
Keysers, C. & Gazzola, V. (2010) Social neuroscience: Mirror neurons recorded in humans. Current Biology 20(8):R353–54.Google Scholar
Keysers, C., Kohler, E., Umiltà, M. A., Nanetti, L., Fogassi, L. & Gallese, V. (2003) Audiovisual mirror neurons and action recognition. Experimental Brain Research 153(4):628–36.Google Scholar
Keysers, C. & Perrett, D. I. (2004) Demystifying social cognition: A Hebbian perspective. Trends in Cognitive Sciences 8(11):501507.Google Scholar
Kilner, J. M. (2011) More than one pathway to action understanding. Trends in Cognitive Sciences 15(8):352–57.Google Scholar
Kilner, J. M., Friston, K. J. & Frith, C. D. (2007a) Predictive coding: An account of the mirror neuron system. Cognitive Processing 8(3):159–66.Google Scholar
Kilner, J. M., Neal, A., Weiskopf, N., Friston, K. J. & Frith, C. D. (2009) Evidence of mirror neurons in human inferior frontal gyrus. The Journal of Neuroscience 29(32):10153–59. doi:10.1523/JNEUROSCI.2668-09.2009.Google Scholar
Kilner, J. M., Paulignan, Y. & Blakemore, S. J. (2003) An interference effect of observed biological movement on action. Current Biology 13(6):522–25.Google Scholar
Kohler, E., Keysers, C., Umiltà, M. A., Fogassi, L., Gallese, V. & Rizzolatti, G. (2002) Hearing sounds, understanding actions: Action representation in mirror neurons. Science 297(5582):846–48.Google Scholar
Kraskov, A., Dancause, N., Quallo, M. M., Shepherd, S. & Lemon, R. N. (2009) Corticospinal neurons in macaque ventral premotor cortex with mirror properties: A potential mechanism for action suppression? Neuron 64(6):922–30. doi:10.1016/j.neuron.2009.12.010.Google Scholar
Kuhn, S. & Brass, M. (2008) Testing the connection of the mirror system and speech: How articulation affects imitation in a simple response task. Neuropsychologia 46(5):1513–21.Google Scholar
Landmann, C., Landi, S. M., Grafton, S. T. & Della-Maggiore, V. (2011) fMRI supports the sensorimotor theory of motor resonance. PLoS One 6(11):18.Google Scholar
Leighton, J., Bird, G., Charman, T. & Heyes, C. (2008) Weak imitative performance is not due to a functional “mirroring” deficit in adults with Autism Spectrum Disorders. Neuropsychologia 46(4) 1041–49.Google Scholar
Lepage, J. F. & Théoret, H. (2007) The mirror neuron system: Grasping others' actions from birth? Developmental Science 10(5):513–23.Google Scholar
Leslie, K. R., Johnson-Frey, S. H. & Grafton, S. T. (2004) Functional imaging of face and hand imitation: Towards a motor theory of empathy. Neuroimage 21(2):601607.Google Scholar
Lingnau, A., Gesierich, B. & Caramazza, A. (2009) Asymmetric fMRI adaptation reveals no evidence for mirror neurons in humans. Proceedings of the National Academy of Sciences USA 106(24):9925–30.Google Scholar
Longo, M. R., Kosobud, A. & Bertenthal, B. I. (2008) Automatic imitation of biomechanically possible and impossible actions: Effects of priming movements versus goals. Journal of Experimental Psychology: Human Perception and Performance 34(2):489501.Google Scholar
Lotto, A. J., Hickok, G. S. & Holt, L. L. (2009) Reflections on mirror neurons and speech perception. Trends in Cognitive Sciences 13(3):110–14.Google Scholar
Loula, F., Prasad, S., Harber, K. & Shiffrar, M. (2005) Recognizing people from their movement. Journal of Experimental Psychology: Human Perception and Performance 31(1):210–20.Google Scholar
Mameli, M. & Bateson, P. (2006) Innateness and the sciences. Biology and Philosophy 21:155–88.Google Scholar
Margulis, E. H., Mlsna, L. M., Uppunda, A. K., Parrish, T. B. & Wong, P. C. (2009) Selective neurophysiologic responses to music in instrumentalists with different listening biographies. Human Brain Mapping 30(1):267–75.Google Scholar
Marshall, P. J. & Meltzoff, A. N. (2011) Neural mirroring systems: Exploring the EEG mu rhythm in human infancy. Developmental Cognitive Neuroscience 1:110–23.Google Scholar
Marshall, P. J., Young, T. & Meltzoff, A. N. (2011) Neural correlates of action observation and execution in 14-month-old infants: An event-related EEG desynchronization study. Developmental Science 14:474–80. doi:10.1111/j.1467-7687.2010.00991.x.Google Scholar
McEwen, F., Happé, F., Bolton, P., Rijsdijk, F., Ronald, A., Dworzynski, K. & Plomin, R. (2007) Origins of individual differences in imitation: Links with language, pretend play, and socially insightful behavior in two-year-old twins. Child Development 78(2):474–92.Google Scholar
Meer, A. L. V. D., Weel, F. R. V. D. & Lee, D. N. (1996) Lifting weights in neonates: Developing visual control of reaching. Scandinavian Journal of Psychology 37(4):424–36.Google Scholar
Meltzoff, A. N. & Moore, M. K. (1977) Imitation of facial and manual gestures by human neonates. Science 198(4312):7578.Google Scholar
Mengotti, P., Ticini, L. F., Waszak, F., Schutz-Bosbach, S. & Rumiati, R. I. (2013) Imitating others' actions: Transcranial magnetic stimulation of the parietal opercula reveals the processes underlying automatic imitation. European Journal of Neuroscience 37(2):316–22.Google Scholar
Molenberghs, P., Cunnington, R. & Mattingley, J. B. (2009) Is the mirror neuron system involved in imitation? A short review and meta-analysis. Neuroscience Biobehavioral Review 33(7):975–80.Google Scholar
Molenberghs, P., Cunnington, R. & Mattingley, J. B. (2012) Brain regions with mirror properties: A meta-analysis of 125 human fMRI studies. Neuroscience and Biobehavioral Reviews 36(1):341–49.Google Scholar
Moro, V., Urgesi, C., Pernigo, S., Lanteri, P., Pazzaglia, M. & Aglioti, S. M. (2008) The neural basis of body form and body action agnosia. Neuron 60(2):235–46.Google Scholar
Mukamel, R., Ekstrom, A. D., Kaplan, J., Iacoboni, M. & Fried, I. (2010) Single-neuron responses in humans during execution and observation of actions. Current Biology 20(8):750–56.Google Scholar
Murata, A., Fadiga, L., Fogassi, L., Gallese, V., Raos, V. & Rizzolatti, G. (1997) Object representation in the ventral premotor cortex (area F5) of the monkey. Journal of Neurophysiology 78(4):2226–30.Google Scholar
Murata, A., Gallese, V., Luppino, G., Kaseda, M. & Sakata, H. (2000) Selectivity for the shape, size, and orientation of objects for grasping in neurons of monkey parietal area AIP. Journal of Neurophysiology 83(5):2580–601.Google Scholar
Nagy, E., Compagne, H., Orvos, H., Pal, A., Molnar, P., Janszky, I., Loveland, K. A. & Bardos, G. (2005) Index finger movement imitation by human neonates: Motivation, learning, and left-hand preference. Pediatric Research 58(4):749–53.Google Scholar
Negri, G. A., Rumiati, R. I., Zadini, A., Ukmar, M., Mahon, B. Z. & Caramazza, A. (2007) What is the role of motor simulation in action and object recognition? Evidence from apraxia. Cognitive Neuropsychology 24(8):795816.Google Scholar
Newman-Norlund, R. D., Ondobaka, S., van Schie, H. T., van Elswijk, G. & Bekkering, H. (2010) Virtual lesions of the IFG abolish response facilitation for biological and non-biological cues. Frontiers in Behavioral Neuroscience 4:5.Google Scholar
Newman-Norlund, R. D., van Schie, H. T., van Zuijlen, A. M. J. & Bekkering, H. (2007) The mirror neuron system is more active during complementary compared with imitative action. Nature Neuroscience 10(7):817–18.Google Scholar
Nishitani, N. & Hari, R. (2000) Temporal dynamics of cortical representation for action. Proceedings of the National Academy of Sciences USA 97(2):913–18.Google Scholar
Nishitani, N. & Hari, R. (2002) Viewing lip forms: Cortical dynamics. Neuron 36(6):1211–20.Google Scholar
Nishitani, N., Avikainen, S. & Hari, R. (2004) Abnormal imitation-related cortical activation sequences in Asperger's syndrome. Annals of Neurology 55(4):558–62.Google Scholar
Nyström, P., Ljunghammar, T., Rosander, K. & von Hofsten, C. (2011) Using mu-rhythm perturbations to measure mirror neuron activity in infants. Developmental Science 14(2):327–35. doi:10.1111/j.1467-7687.2010.00979.x.Google Scholar
Oram, M. W. & Perrett, D. I. (1994) Responses of anterior superior temporal polysensory (STPa) neurons to biological motion stimuli. Journal of Cognitive Neuroscience 6:99116.Google Scholar
Oram, M. W. & Perrett, D. I. (1996) Integration of form and motion in the anterior superior temporal polysensory area (STPa) of the macaque monkey. Journal of Neurophysiology 76(1):109–29.Google Scholar
Oyama, S. (1985) The ontogeny of information: Developmental systems and evolution. Cambridge University Press.Google Scholar
Oztop, E., Kawato, M. & Arbib, M. A. (2006) Mirror neurons and imitation: A computationally guided review. Neural Networks 19:254–71.Google Scholar
Paukner, A., Ferrari, P. F. & Suomi, S. J. (2011) Delayed imitation of lipsmacking gestures by infant rhesus macaques (Macaca mulatta). PLoS One 6(12):e28848. doi: 10.1371/journal.pone.0028848.Google Scholar
Paulus, M., Hunnius, S., van Elk, M. & Bekkering, H. (2012) How learning to shake a rattle affects 8-month-old infants' perception of the rattle's sound: Electrophysiological evidence for action-effect binding in infancy. Developmental Cognitive Neuroscience 2:9096. doi:10.1016/j.dcn.2011.05.006.Google Scholar
Pawlby, S. J. (1977) Imitative interaction. In: Studies in mother-infant interaction, ed. Schaffer, H., pp. 203–24. Academic Press.Google Scholar
Pazzaglia, M., Smania, N., Corato, E. & Aglioti, S. M. (2008) Neural underpinnings of gesture discrimination in patients with limb apraxia. Journal of Neuroscience 28(12):3030–41.Google Scholar
Peck, C. A. & Bouton, M. E. (1990) Context and performance in aversive-to-appetitive and appetitive-to-aversive transfer. Learning and Motivation 21(1):131.Google Scholar
Perrett, D. I., Harries, M. H., Bevan, R., Thomas, S., Benson, P. J., Mistlin, A. J., Chitty, A. K., Hietanen, J. K. & Ortega, J. E. (1989) Frameworks of analysis for the neural representation of animate objects and actions. Journal of Experimental Biology 146:87113.Google Scholar
Petersen, S. E., Fox, P. T., Snyder, A. Z. & Raichle, M. E. (1990) Activation of extrastriate and frontal cortical areas by visual words and word-like stimuli. Science 249(4972):1041–44.Google Scholar
Petroni, A., Baguear, F. & Della-Maggiore, V. (2010) Motor resonance may originate from sensorimotor experience. Journal of Neurophysiology 104(4):1867–71.Google Scholar
Pfurtscheller, G., Neuper, C. & Krausz, G. (2000) Functional dissociation of lower and upper frequency mu rhythms in relation to voluntary limb movement. Clinical Neurophysiology 111:1873–79.Google Scholar
Pineda, J. O. & Oberman, L. M. (2006) What goads cigarette smokers to smoke? Neural adaptation and the mirror neuron system. Brain Research 1121(1):128–35.Google Scholar
Pinker, S. (1997) How the mind works. Penguin Press.Google Scholar
Pobric, G. & Hamilton, A. F. (2006) Action understanding requires the left inferior frontal cortex. Current Biology 16(5):524–29.Google Scholar
Ponseti, J., Bosinski, H. A., Wolff, S., Peller, M., Jansen, O., Mehdorn, H. M., Büchel, C. & Siebner, H. R. (2006) A functional endophenotype for sexual orientation in humans. Neuroimage 33(3):825–33.Google Scholar
Press, C. (2011) Action observation and robotic agents: Learning and anthropomorphism. Neuroscience and Biobehavioural Reviews 35(6):1410–18.Google Scholar
Press, C., Catmur, C., Cook, R., Widman, H., Heyes, C. & Bird, G. (2012a) fMRI adaptation reveals geometric shape “mirror neurons.PLoS One 7(12):e51934.Google Scholar
Press, C., Gillmeister, H. & Heyes, C. (2007) Sensorimotor experience enhances automatic imitation of robotic action. Proceedings of the Royal Society of London B: Biological Sciences 274(1625):2509–14.Google Scholar
Press, C., Weiskopf, N. & Kilner, J. M. (2012b) Dissociable roles of human inferior frontal gyrus during action execution and observation. NeuroImage 60:1671–77.Google Scholar
Proverbio, A. M., Riva, F. & Zani, A. (2009) Observation of static pictures of dynamic actions enhances the activity of movement-related brain areas. PLoS One 4(5):e5389.Google Scholar
Ramachandran, V. S. (2009) The neurons that shaped civilization. Available at: http://www.ted.com/talks/vs_ramachandran_the_neurons_that_shaped_civilization.html Google Scholar
Range, F., Huber, L. & Heyes, C. (2011) Automatic imitation in dogs. Proceedings of the Royal Society B: Biological Sciences 278(1703):211–17.Google Scholar
Ray, E. & Heyes, C. (2011) Imitation in infancy: The wealth of the stimulus. Developmental Science 14(1):92105.Google Scholar
Reeb-Sutherland, B. C., Levitt, P. & Fox, N. A. (2012) The predictive nature of individual differences in early associative learning and emerging social behavior. PLoS ONE 7(1):e30511. doi: 10.1371/journal.pone.0030511.Google Scholar
Rescorla, R. A. (1968) Probability of shock in the presence and absence of CS in fear conditioning. Journal of Comparative and Physiological Psychology 66(1):15.Google Scholar
Richards, C., Mottley, K., Pearce, J. & Heyes, C. (2009) Imitative pecking in budgerigars over a 24 hour delay. Animal Behaviour 77:1111–18.Google Scholar
Rizzolatti, G. & Arbib, M. A. (1998) Language within our grasp. Trends in Neurosciences 21(5):188–94.Google Scholar
Rizzolatti, G., Camarda, R., Fogassi, L., Gentilucci, M., Luppino, G. & Matelli, M. (1988) Functional organization of inferior area 6 in the macaque monkey. II. Area F5 and the control of distal movements. Experimental Brain Research 71(3):491507.Google Scholar
Rizzolatti, G. & Craighero, L. (2004) The mirror-neuron system. Annual Review of Neuroscience 27:169–92.Google Scholar
Rizzolatti, G. & Fadiga, L. (1998) Grasping objects and grasping action meanings: The dual role of monkey rostroventral premotor cortex (area F5). Novartis Foundation Symposium 218 8195; discussion 95–103.Google Scholar
Rizzolatti, G., Fadiga, L., Gallese, V. & Fogassi, L. (1996) Premotor cortex and the recognition of motor actions. Social Cognitive and Affective Neuroscience 3(2):131–41.Google Scholar
Rizzolatti, G. & Sinigaglia, C. (2010) The functional role of the parieto-frontal mirror circuit: Interpretations and misinterpretations. Nature Reviews Neuroscience 11(4):264–74. doi: 10.1038/nrn2805.Google Scholar
Rocca, M. A., Tortorella, P., Ceccarelli, A., Falini, A., Tango, D., Scotti, G., Comi, G. & Fillipi, M. (2008) The “mirror-neuron system” in MS: A 3 tesla fMRI study. Neurology 70(4):255–62.Google Scholar
Rochat, M. J., Caruana, F., Jezzini, A., Escola, L., Intskirveli, I., Grammont, F., Gallese, V., Rizzolatti, G. & Umiltà, M. A. (2010) Responses of mirror neurons in area F5 to hand and tool grasping observation. Experimental Brain Research 204(4):605–16.Google Scholar
Rochat, P. (1998) Self-perception and action in infancy. Experimental Brain Research 123:102109.Google Scholar
Saygin, A. P. (2007) Superior temporal and premotor brain areas necessary for biological motion perception. Brain 130(Pt 9):2452–61.Google Scholar
Saygin, A. P., Wilson, S. M., Dronkers, N. F. & Bates, E. (2004a) Action comprehension in aphasia: Linguistic and non-linguistic deficits and their lesion correlates. Neuropsychologia 42(13):1788–804.Google Scholar
Schultz, W. & Dickinson, A. (2000) Neuronal coding of prediction errors. Annual Review of Neuroscience 23:473500.Google Scholar
Scott, S. K., McGettigan, C. & Eisner, F. (2009) A little more conversation, a little less action – Candidate roles for the motor cortex in speech perception. Nature Reviews Neuroscience 10(4):295302.Google Scholar
Serino, A., De Filippo, L., Casavecchia, C., Coccia, M., Shiffrar, M. & Ladavas, E. (2010) Lesions to the motor system affect action perception. Journal of Cognitive Neuroscience 22(3):413–26.Google Scholar
Silvanto, J., Muggleton, N. G., Cowey, A. & Walsh, V. (2007) Neural activation state determines behavioral susceptibility to modified theta burst transcranial magnetic stimulation. European Journal of Neuroscience 26(2):523–28.Google Scholar
Sitnikova, T., Kuperberg, G. & Holcomb, P. J. (2003) Semantic integration in videos of real-world events: An electrophysiological investigation. Psychophysiology 40(1):160–64.Google Scholar
Soussignan, R., Courtial, A., Canet, P., Danon-Apter, G. & Nadel, J. (2011) Human newborns match tongue protrusion of disembodied human and robotic mouths. Developmental Science 14(2):385–94.Google Scholar
Stadler, W., Ott, D. V., Springer, A., Schubotz, R. I., Schutz-Bosbach, S. & Prinz, W. (2012) Repetitive TMS suggests a role of the human dorsal premotor cortex in action prediction. Frontiers in Human Neuroscience 6:20.Google Scholar
Stürmer, B., Aschersleben, G. & Prinz, W. (2000) Correspondence effects with manual gestures and postures: A study of imitation. Journal of Experimental Psychology: Human Perception and Performance 26(6):1746.Google Scholar
Tanaka, S. & Inui, T. (2002) Cortical involvement for action imitation of hand/arm postures versus finger configurations: An fMRI study. NeuroReport 13(13):1599–602.Google Scholar
Tessari, A., Canessa, N., Ukmar, M. & Rumiati, R. I. (2007) Neuropsychological evidence for a strategic control of multiple routes in imitation. Brain 130(Pt 4):1111–26.Google Scholar
Theoret, H. & Pascual-Leone, A. (2002) Language acquisition: Do as you hear. Current Biology 12(21):R736–37.Google Scholar
Tiedens, L. Z. & Fragale, A. R. (2003) Power moves: Complementarity in dominant and submissive nonverbal behavior. Journal of Personality and Social Psychology 84(3):558–68.Google Scholar
Tkach, D., Reimer, J. & Hatsopoulos, N. G. (2007) Congruent activity during action and action observation in motor cortex. Journal of Neuroscience 27(48):13241–50.Google Scholar
Umiltà, M. A., Kohler, E., Gallese, V., Fogassi, L., Fadiga, L., Keysers, C. & Rizzolatti, G. (2001) I know what you are doing: A neurophysiological study. Neuron 31(1):155–65.Google Scholar
Urgesi, C., Calvo-Merino, B., Haggard, P. & Aglioti, S. M. (2007a) Transcranial magnetic stimulation reveals two cortical pathways for visual body processing. Journal of Neuroscience 27(30):8023–30.Google Scholar
Urgesi, C., Candidi, M., Ionta, S. & Aglioti, S. M. (2007b) Representation of body identity and body actions in extrastriate body area and ventral premotor cortex. Nature Neuroscience 10(1):3031.Google Scholar
Uzgiris, I. C., Benson, J. B., Kruper, J. C. & Vasek, M. E. (1989) Contextual influences on imitative interactions between mothers and infants. In: Action in social context: Perspectives on early development, ed. Lockman, J. & Hazen, N., pp. 103–27. Plenum Press.Google Scholar
van Kemenade, B. M., Muggleton, N., Walsh, V. & Saygin, A. P. (2012) Effects of TMS over premotor and superior temporal cortices on biological motion perception. Journal of Cognitive Neuroscience 24(4):896904.Google Scholar
Van Overwalle, F. & Baetens, K. (2009) Understanding others' actions and goals by mirror and mentalizing systems: A meta-analysis. Neuroimage 48(3):564–84.Google Scholar
van Schie, H. T., van Waterschoot, B. M. & Bekkering, H. (2008) Understanding action beyond imitation: Reversed compatibility effects of action observation in imitation and joint action. Journal of Experimental Psychology: Human Perception and Performance 34(6):1493–500.Google Scholar
Verschoor, S. A., Weidema, M., Biro, S. & Hommel, B. (2010) Where do action goals come from? Evidence for spontaneous action-effect binding in infants. Frontiers in Psychology 1(201):16.Google Scholar
Virji-Babul, N., Moiseev, A., Cheung, T., Weeks, D., Cheyne, D. & Ribary, U. (2008) Changes in mu rhythm during action observation and execution in adults with Down syndrome: Implications for action representation. Neuroscience Letters 436(2):177–80.Google Scholar
Voelkl, B. & Huber, L. (2000) True imitation in marmosets. Animal Behaviour 60(2):195202.Google Scholar
Voelkl, B. & Huber, L. (2007) Imitation as faithful copying of a novel technique in marmoset monkeys. PLoS One 2(7):e611.Google Scholar
Vogt, S., Buccino, G., Wohlschlager, A. M., Canessa, N., Shah, N. J., Zilles, K., Eickhoff, S. B., Freund, H. J., Rizzolatti, G. & Fink, G. R. (2007) Prefrontal involvement in imitation learning of hand actions: Effects of practice and expertise. Neuroimage 37(4):1371–83.Google Scholar
White, B. L., Castle, P. & Held, R. (1964) Observations on the development of visually guided reaching. Child Development 35:349–64.Google Scholar
Wiggett, A. J., Hudson, M., Clifford, A., Tipper, S. P. & Downing, P. E. (2012) Doing, seeing, or both: Effects of learning condition on subsequent action perception. Social Neuroscience 7(6):606–21.Google Scholar
Wiggett, A. J., Hudson, M., Tipper, S. P. & Downing, P. E. (2011) Learning associations between action and perception: Effects of incompatible training on body part and spatial priming. Brain and Cognition 76(1):8796. doi: 10.1016/j.bandc.2011.02.014.Google Scholar
Williams, G. C. (1966) Adaptation and natural selection. Princeton University Press.Google Scholar
Williams, J. H., Whiten, A., Suddendorf, T. & Perrett, D. I. (2001) Imitation, mirror neurons and autism. Neuroscience and Biobehavioral Reviews 25(4):287–95.Google Scholar