No CrossRef data available.
Article contents
Meta-learning modeling and the role of affective-homeostatic states in human cognition
Published online by Cambridge University Press: 23 September 2024
Abstract
The meta-learning framework proposed by Binz et al. would gain significantly from the inclusion of affective and homeostatic elements, currently neglected in their work. These components are crucial as cognition as we know it is profoundly influenced by affective states, which arise as intricate forms of homeostatic regulation in living bodies.
- Type
- Open Peer Commentary
- Information
- Copyright
- Copyright © The Author(s), 2024. Published by Cambridge University Press
References
Ahmed, W., Van der Werf, G., Kuyper, H., & Minnaert, A. (2013). Emotions, self-regulated learning, and achievement in mathematics: A growth curve analysis. Journal of Educational Psychology, 105(1), 150.Google Scholar
Bar-Haim, Y., Lamy, D., Pergamin, L., Bakermans-Kranenburg, M. J., & Van Ijzendoorn, M. H. (2007). Threat-related attentional bias in anxious and nonanxious individuals: A meta-analytic study. Psychological Bulletin, 133(1), 1.Google Scholar
Barrett, L. F. (2017). How emotions are made: The secret life of the brain. Houghton Mifflin Harcourt.Google Scholar
Barrett, L. F., & Bar, M. (2009). See it with feeling: Affective predictions during object perception. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1521), 1325–1334.Google Scholar
Barrett, L. F., & Simmons, W. K. (2015). Interoceptive predictions in the brain. Nature Reviews Neuroscience, 16(7), 419–429.Google Scholar
Berridge, K., & Winkielman, P. (2003). What is an unconscious emotion?(The case for unconscious “liking”). Cognition and Emotion, 17(2), 181–211. https://doi.org/10.1080/02699930302289Google Scholar
Brackett, M. (2019). Permission to feel: Unlocking the power of emotions to help our kids, ourselves, and our society thrive. Celadon Books.Google Scholar
Bronfman, Z., Ginsburg, S., & Jablonka, E. (2021). When will robots be sentient? Journal of Artificial Intelligence and Consciousness, 8(02), 183–203.Google Scholar
Cea, I. (2023). The somatic roots of affect: Toward a body-centered education. In Fossa, P., & Cortés-Rivera, C. (Eds.), Affectivity and learning: Bridging the gap between neurosciences, cultural and cognitive psychology (pp. 555–583). Springer.Google Scholar
Cea, I., & Martínez-Pernía, D. (2023). Continuous organismic sentience as the integration of core affect and vitality. Journal of Consciousness Studies, 30(3–4), 7–33. https://doi.org/https://doi.org/10.53765/20512201.30.3.007Google Scholar
Clore, G., & Schiller, A. (2018). New light on the affect-cognition connection. In Barrett, L. F., Lewis, M., & Haviland-Jones, J. M. (Eds.), Handbook of emotions, (4th ed., pp. 532–546). The Guilford Press.Google Scholar
Di Fabio, A., & Palazzeschi, L. (2009). An in-depth look at scholastic success: Fluid intelligence, personality traits or emotional intelligence? Personality and Individual Differences, 46(5–6), 581–585.Google Scholar
Fredrickson, B. L., & Branigan, C. (2005). Positive emotions broaden the scope of attention and thought-action repertoires. Cognition & Emotion, 19(3), 313–332.Google Scholar
Hajcak, G., Jackson, F., Ferri, J., & Weinberg, A. (2018). Emotion and attention. In Barrett, L. F., Lewis, M., & Haviland-Jones, J. M. (Eds.), Handbook of emotions, (4th ed., pp. 595–609). The Guilford Press.Google Scholar
James, W. (1890). The principles of psychology (Vol. 1, Issue n/a). Dover Publications.Google Scholar
Kensinger, E. A., & Schacter, D. L. (2018). Memory and emotion. In Barrett, L. F., Lewis, M., & Haviland-Jones, J. M. (Eds.), Handbook of emotions, (4th ed., pp. 564–578). The Guilford Press.Google Scholar
Li, W., Moallem, I., Paller, K. A., & Gottfried, J. A. (2007). Subliminal smells can guide social preferences. Psychological Science, 18(12), 1044–1049.Google Scholar
Man, K., & Damasio, A. (2019). Homeostasis and soft robotics in the design of feeling machines. Nature Machine Intelligence, 1(10), 446–452.Google Scholar
Manns, J. R., & Bass, D. I. (2016). The amygdala and prioritization of declarative memories. Current Directions in Psychological Science, 25(4), 261–265.Google Scholar
McGaugh, J. L. (2013). Making lasting memories: Remembering the significant. Proceedings of the National Academy of Sciences, 110(supplement_2), 10402–10407.Google Scholar
Ormrod, J. E., Anderman, E. M., & Anderman, L. H. (2019). Educational psychology: Developing learners, (10th ed.). Pearson.Google Scholar
Phelps, E. A., & Sharot, T. (2008). How (and why) emotion enhances the subjective sense of recollection. Current Directions in Psychological Science, 17(2), 147–152.Google Scholar
Schaefer, A., & Philippot, P. (2005). Selective effects of emotion on the phenomenal characteristics of autobiographical memories. Memory, 13(2), 148–160.Google Scholar
Seth, A. K., & Tsakiris, M. (2018). Being a beast machine: The somatic basis of selfhood. Trends in Cognitive Sciences, 22(11), 969–981. https://doi.org/10.1016/j.tics.2018.08.008Google Scholar
Wang, L., Kennedy, B. L., & Most, S. B. (2012). When emotion blinds: A spatiotemporal competition account of emotion-induced blindness. Frontiers in Psychology, 3, 438.Google Scholar
Yoshida, N. (2017). Homeostatic agent for general environment. Journal of Artificial General Intelligence, 8(1), 1.Google Scholar
Target article
Meta-learned models of cognition
Related commentaries (22)
Bayes beyond the predictive distribution
Challenges of meta-learning and rational analysis in large worlds
Combining meta-learned models with process models of cognition
Integrative learning in the lens of meta-learned models of cognition: Impacts on animal and human learning outcomes
Is human compositionality meta-learned?
Learning and memory are inextricable
Linking meta-learning to meta-structure
Meta-learned models as tools to test theories of cognitive development
Meta-learned models beyond and beneath the cognitive
Meta-learning and the evolution of cognition
Meta-learning as a bridge between neural networks and symbolic Bayesian models
Meta-learning goes hand-in-hand with metacognition
Meta-learning in active inference
Meta-learning modeling and the role of affective-homeostatic states in human cognition
Meta-learning: Bayesian or quantum?
Probabilistic programming versus meta-learning as models of cognition
Quantum Markov blankets for meta-learned classical inferential paradoxes with suboptimal free energy
Quo vadis, planning?
The added value of affective processes for models of human cognition and learning
The hard problem of meta-learning is what-to-learn
The meta-learning toolkit needs stronger constraints
The reinforcement metalearner as a biologically plausible meta-learning framework
Author response
Meta-learning: Data, architecture, and both